Chapter 5: Q2E (page 337)
Suppose that F is a continuous c.d.f. on the real line, and let \({{\bf{\alpha }}_{\bf{1}}}\,{\bf{and}}\,{{\bf{\alpha }}_{\bf{2}}}\)be numbers such that \({\bf{F}}\left( {{{\bf{\alpha }}_{\bf{1}}}} \right)\,{\bf{ = 0}}{\bf{.3}}\,{\bf{and}}\,{\bf{F}}\left( {\,{{\bf{\alpha }}_{\bf{2}}}} \right){\bf{ = 0}}{\bf{.8}}{\bf{.}}\). Suppose 25 observations are selected at random from the distribution for which the c.d.f. is F. What is the probability that six of the observed values will be less than \({{\bf{\alpha }}_{\bf{1}}}\), 10 of the observed values will be between \({{\bf{\alpha }}_{\bf{1}}}\) and \({{\bf{\alpha }}_{\bf{2}}}\), and nine of the observed values will be greater than \({{\bf{\alpha }}_{\bf{2}}}\)?
Short Answer
0.0060.