Chapter 5: Q24E (page 326)
Review the derivation of the Black-Scholes formula (5.6.18). For this exercise, assume that our stock price at time u in the future is
\({{\bf{S}}_{\bf{0}}}{{\bf{e}}^{{\bf{\mu u + }}{{\bf{W}}_{\bf{u}}}}}\)where \({{\bf{W}}_{\bf{u}}}\) has the gamma distribution with parameters αu and β with β > 1. Let r be the risk-free interest rate.
a. Prove that \({{\bf{e}}^{{\bf{ - ru}}}}{\bf{E}}\left( {{{\bf{S}}_{\bf{u}}}} \right){\bf{ = }}{{\bf{S}}_{\bf{0}}}\,\,{\bf{if }}\,{\bf{and}}\,\,{\bf{only}}\,\,{\bf{if}}\,{\bf{\mu = r - \alpha log}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right)\)
b. Assume that \({\bf{\mu = r - \alpha log}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right)\). Let R be 1 minus the c.d.f. of the gamma distribution with parameters αu and 1. Prove that the risk-neutral price for the option to buy one share of the stock for the priceq at the time u is \(\begin{array}{l}{{\bf{S}}_{\bf{0}}}{\bf{R}}\left( {{\bf{c}}\left[ {{\bf{\beta - 1}}} \right]} \right){\bf{ - q}}{{\bf{e}}^{{\bf{ - ru}}}}{\bf{R}}\left( {{\bf{c\beta }}} \right)\,\,{\bf{where}}\\{\bf{c = log}}\left( {\frac{{\bf{q}}}{{{{\bf{S}}_{\bf{0}}}}}} \right){\bf{ + \alpha ulog}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right){\bf{ - ru}}\end{array}\)
c. Find the price for the option being considered when u = 1, q = \({{\bf{S}}_{\bf{0}}}\), r = 0.06, α = 1, and β = 10.
Short Answer
a.\({e^{ - ru}}E\left( {{S_u}} \right) = {S_0}\,\,{\rm{if }}\,{\rm{and}}\,\,{\rm{only}}\,\,{\rm{if}}\,\mu {\rm{ = r - }}\alpha {\rm{log}}\left( {\frac{\beta }{{\beta - 1}}} \right)\)
b.one share of the stock for the price q at thew time u is
\(\begin{array}{l}{S_0}R\left( {c\left[ {\beta - 1} \right]} \right) - q{e^{ - ru}}R\left( {c\beta } \right)\,\,{\rm{where}}\\\\{\rm{c = log}}\left( {\frac{q}{{{S_0}}}} \right) + \alpha u\log \left( {\frac{\beta }{{\beta - 1}}} \right) - ru\end{array}\)
c.0.0454