a. Since F has memoryless property, it follows that
\(\begin{aligned}{}\frac{{1 - F\left( {t + h} \right)}}{{1 - F\left( t \right)}} &= \frac{{1 - P\left( {X < t + h} \right)}}{{1 - P\left( {X < t} \right)}}\\ &= \frac{{P\left( {X \ge t + h} \right)}}{{P\left( {X \ge t} \right)}}\\ &= \frac{{P\left( {X \ge t + h,X \ge t} \right)}}{{P\left( {X \ge t} \right)}}\\ &= P\left( {X \ge t + h|X \ge t} \right)\\ &= P\left( {X \ge h} \right)\\ &= 1 - P\left( {X < h} \right)\\& = 1 - F\left( h \right)\end{aligned}\)
Hence the relation is proved.
b. From part(a),
\(1 - F\left( h \right) = \frac{{1 - F\left( {t + h} \right)}}{{1 - F\left( t \right)}}\)
Taking logarithm on both sides, we have
\(\begin{aligned}{}{\rm{log}}\left( {1 - F\left( h \right)} \right)& = {\rm{log}}\left( {\frac{{1 - F\left( {t + h} \right)}}{{1 - F\left( t \right)}}} \right)\\{\rm{log}}\left( {1 - F\left( h \right)} \right) &= {\rm{log}}\left( {1 - F\left( {t + h} \right)} \right) - {\rm{log}}\left( {1 - F\left( t \right)} \right)\\\ell \left( h \right)& = \ell \left( {t + h} \right) - \ell \left( t \right)\\\ell \left( {t + h} \right) &= \ell \left( t \right) + \ell \left( h \right)\end{aligned}\)
Hence it is proved.
c.From part (b)
\(\begin{aligned}{}\ell \left( {\frac{t}{m} + \frac{t}{m}} \right) &= \ell \left( {\frac{t}{m}} \right) + \ell \left( {\frac{t}{m}} \right)\\\ell \left( {\frac{{2t}}{m}} \right)&= 2\ell \left( {\frac{t}{m}} \right)\,\,{\rm{and}}\\{\rm{similarly}}\,\ell \left( {\frac{{kt}}{m}} \right) &= k\ell \left( {\frac{t}{m}} \right)\\{\rm{Let}}\,{\rm{k = m}}\,{\rm{then}}\\\ell \left( {\frac{{mt}}{m}} \right) &= m\ell \left( {\frac{t}{m}} \right)\\\ell (t)& = m\ell \left( {\frac{t}{m}} \right)\\\ell \left( {\frac{t}{m}} \right)& = \frac{1}{m}\ell \left( t \right)\\Now,\\\ell \left( {\frac{{kt}}{m}} \right) &= k\ell \left( {\frac{t}{m}} \right)\\ &= k \times \frac{1}{m}\ell \left( t \right)\\ &= \frac{k}{m}\ell (t)\end{aligned}\)
Hence the relation is proved.
d. From part (c)
\(\begin{aligned}{}{\rm{if}}\frac{{\rm{k}}}{{\rm{m}}}{\rm{ = c}}\,{\rm{then}}\\\ell \left( {\frac{{kt}}{m}} \right) &= \frac{k}{m}\ell \left( t \right)\\\ell \left( {ct} \right)& = c\ell \left( t \right)\end{aligned}\)
e.From part (d)
\(\begin{aligned}{l}{\rm{ifc = }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{then}}\\g\left( t \right) = \ell \left( {\frac{t}{t}} \right) = \frac{{\ell \left( t \right)}}{t}\\\frac{{\ell \left( t \right)}}{t} = \ell \left( 1 \right) = {\rm{constant}}\end{aligned}\)
f. From part(e)
\(\begin{aligned}{}\frac{{\ell \left( t \right)}}{t} &= \ell \left( 1 \right) = - \lambda \left( {{\rm{say}}} \right)\\\ell \left( t \right)& = - \lambda t\\{\rm{log}}\left( {1 - F\left( t \right)} \right) &= - \lambda t\\1 - F\left( t \right) &= {e^{ - \lambda t}}\\F\left( t \right) &= 1 - {e^{ - \lambda t}}\end{aligned}\)
Thus F must be CDF of an exponential distribution with parameter\(\lambda = - \ell \left( 1 \right)\)\(\)