Let us consider the integral
\(\int\limits_0^x {h\left( t \right)dt = \int\limits_0^x {\frac{{f\left( t \right)}}{{1 - F\left( t \right)}}dt} } \)
F is the cdf of X, hence
\(\begin{array}{l}F\left( x \right) = \int\limits_0^x {f\left( t \right)dt} \\\frac{d}{{dt}}\left( {1 - F\left( t \right)} \right) = - f\left( t \right)\end{array}\)
Hence by using the integration by parts
\(\begin{aligned}{}\int\limits_0^x {h\left( t \right)dt} &= - \left[ {\log \left( {1 - F\left( t \right)} \right)} \right]_0^x\\ &= - \left[ {\log \left( {1 - F\left( x \right)} \right) - \log \left( {1 - F\left( 0 \right)} \right)} \right]\\ &= - \log \left( {1 - F\left( x \right)} \right)\end{aligned}\)
Substitute in the left-hand side of equation (1).
\(\begin{array}{l}\exp \left[ { - \int\limits_0^x {h\left( t \right)dt} } \right] = \exp \left[ {\left( { - \log \left( {1 - f\left( x \right)} \right)} \right)} \right]\\\exp \left[ { - \int\limits_0^x {h\left( t \right)dt} } \right] = 1 - F\left( x \right)\end{array}\)
Hence, we have proved the required equality.