Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a random variable\(X\)has the normal distribution with mean\(\mu \)and variance\({\sigma ^2}\). Determine the value of\(E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right]\)for\(n = 1,2....\)

Short Answer

Expert verified

The value of \(E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right]\) is \(\left( {2n - 1} \right)\left( {2n - 3} \right)...\left( 1 \right){\sigma ^{2n}}\)

Step by step solution

01

Given information

A random variable X has followed gamma distribution with mean \(\mu \) and variance \({\sigma ^2}\)

02

calculate \(E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right]\)

Pdf of a normal distribution with mean\(\mu \)and variance\({\sigma ^2}\)is

\(f\left( {x|\mu ,{\sigma ^2}} \right) = \frac{1}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}\exp \left[ { - \frac{1}{2}{{\left( {\frac{{x - \mu }}{\sigma }} \right)}^2}} \right]\) for \( - \infty < x < \infty \)

Hence

\(\begin{aligned}{}E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right] &= \int\limits_{ - \infty }^\infty {{{\left( {X - \mu } \right)}^{2n}}} \frac{1}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}\exp \left[ { - {{\left( {\frac{{x - \mu }}{{2\sigma }}} \right)}^2}} \right]dx\\ &= \frac{2}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}\int\limits_\mu ^\infty {{{\left( {X - \mu } \right)}^{2n}}} \exp \left[ { - \frac{{{{\left( {x - \mu } \right)}^2}}}{{2{\sigma ^2}}}} \right]dx\end{aligned}\)

Let \(y = {\left( {x - \mu } \right)^2}\)

Hence \(x = \frac{{\left( {x - 2\mu } \right) + {\mu ^2}}}{y}\)

\(\frac{{dx}}{{dy}} = \frac{{d\left( {\frac{{\left( {x - 2\mu } \right) + {\mu ^2}}}{y}} \right)}}{{dy}}\)

\(\frac{{dx}}{{dy}} = \frac{1}{{\left( {2{y^{\frac{1}{2}}}} \right)}}\)

Hence \(dx = \frac{{dy}}{{\left( {2{y^{\frac{1}{2}}}} \right)}}\)

Hence expectations can be written as follows,

\(\begin{aligned}{}E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right] &= \frac{2}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}\int\limits_0^\infty {{y^n}} \exp \left\{ { - \frac{y}{{2{\sigma ^2}}}} \right\}\frac{1}{{2{y^{\frac{1}{2}}}}}dy\\& = \frac{1}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}\int\limits_0^\infty {{y^{n - \frac{1}{2}}}} \exp \left\{ { - \frac{y}{{2{\sigma ^2}}}} \right\}dy\end{aligned}\)

The integrand in this integral is the pdf of a gamma distribution with parameters \(\alpha = n + \frac{1}{2}\) and \(\beta = \frac{1}{{\left( {2{\sigma ^2}} \right)}}\) ,except for the constant factor

\(\frac{{{\beta ^\alpha }}}{{\left| \!{\overline {\, {\left( \alpha \right)} \,}} \right. }}\frac{1}{{{{\left( {2{\sigma ^2}} \right)}^{n + \frac{1}{2}\left| \!{\overline {\, {\left( {n + \frac{1}{2}} \right)} \,}} \right. }}}}\)

Since the integral of the pdf of the gamma distribution must be equal to 1, it follows that

\(\begin{array}{} = \int\limits_0^\infty {{y^{n - \frac{1}{2}}}} \exp \left\{ { - \frac{y}{{2{\sigma ^2}}}} \right\}dy\\ = {\left( {2{\sigma ^2}} \right)^{n + 1}}\left| \!{\overline {\, {\left( {n + \frac{1}{2}} \right)} \,}} \right. \end{array}\)

We know

\(\left| \!{\overline {\, {\left( {n + \frac{1}{2}} \right)} \,}} \right. = \left( {n - \frac{1}{2}} \right)\left( {n - \frac{1}{2}} \right)...\left( {\frac{1}{2}} \right){\pi ^{\frac{1}{2}}}\)

Therefore

\(\begin{aligned}{}E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right] &= \frac{1}{{{{\left( {2\pi } \right)}^{\frac{1}{{2\sigma }}}}}}{\left( {2{\sigma ^2}} \right)^{n + \frac{1}{2}}}\left( {n - \frac{1}{2}} \right)\left( {n - \frac{1}{2}} \right)...\left( {\frac{1}{2}} \right){\pi ^{\frac{1}{2}}}\\ &= {2^n}\left( {n - \frac{1}{2}} \right)\left( {n - \frac{3}{2}} \right)...\left( {\frac{1}{2}} \right){\sigma ^{2n}}\\ &= \left( {2n - 1} \right)\left( {2n - 3} \right)...\left( 1 \right){\sigma ^{2n}}\end{aligned}\)

Hence the value of \(E\left[ {{{\left( {X - \mu } \right)}^{2n}}} \right]\) is \(\left( {2n - 1} \right)\left( {2n - 3} \right)...\left( 1 \right){\sigma ^{2n}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that n students are selected at random without replacement from a class containing T students, of whom A are boys and T – A are girls. Let X denote the number of boys that are obtained. For what sample size n will Var(X) be a maximum?

Suppose that seven balls are selected at random withoutreplacement from a box containing five red balls and ten blue balls. If \(\overline X \) denotes the proportion of red balls in the sample, what are the mean and the variance of \(\overline X \) ?

Find the value of \(\left( {\begin{array}{*{20}{c}}{\frac{3}{2}}\\4\end{array}} \right)\).

Let \({{\bf{X}}_{{\bf{1,}}}}{\bf{ }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\)be i.i.d. random variables having the normal distribution with mean \({\bf{\mu }}\) and variance\({{\bf{\sigma }}^{\bf{2}}}\). Define\(\overline {{{\bf{X}}_{\bf{n}}}} {\bf{ = }}\frac{{\bf{1}}}{{\bf{n}}}\sum\limits_{{\bf{i = 1}}}^{\bf{n}} {{{\bf{X}}_{\bf{i}}}} \) , the sample mean. In this problem, we shall find the conditional distribution of each \({{\bf{X}}_{\bf{i}}}\)given\(\overline {{{\bf{X}}_{\bf{n}}}} \).

a.Show that \({{\bf{X}}_{\bf{i}}}\)and\(\overline {{{\bf{X}}_{\bf{n}}}} \) have the bivariate normal distribution with both means \({\bf{\mu }}\), variances\({{\bf{\sigma }}^{\bf{2}}}{\rm{ }}{\bf{and}}\,\,\frac{{{{\bf{\sigma }}^{\bf{2}}}}}{{\bf{n}}}\),and correlation\(\frac{{\bf{1}}}{{\sqrt {\bf{n}} }}\).

Hint: Let\({\bf{Y = }}\sum\limits_{{\bf{j}} \ne {\bf{i}}} {{{\bf{X}}_{\bf{j}}}} \).

Now show that Y and \({{\bf{X}}_{\bf{i}}}\) are independent normal and \({{\bf{X}}_{\bf{n}}}\)and \({{\bf{X}}_{\bf{i}}}\) are linear combinations of Y and \({{\bf{X}}_{\bf{i}}}\) .

b.Show that the conditional distribution of \({{\bf{X}}_{\bf{i}}}\) given\(\overline {{{\bf{X}}_{\bf{n}}}} {\bf{ = }}\overline {{{\bf{x}}_{\bf{n}}}} \)\(\) is normal with mean \(\overline {{{\bf{x}}_{\bf{n}}}} \) and variance \({{\bf{\sigma }}^{\bf{2}}}\left( {{\bf{1 - }}\frac{{\bf{1}}}{{\bf{n}}}} \right)\).

Sketch the p.d.f. of the exponential distribution for each of the following values of the parameter β:(a)\(\beta = \frac{1}{2}\),(b)\(\beta = 1\), and (c)\(\beta = 2\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free