Chapter 5: Q16E (page 326)
It is said that a random variable X has the Pareto distribution with parameters\({{\bf{x}}_{\bf{0}}}\,{\bf{and}}\,{\bf{\alpha }}\) if X has a continuous distribution for which the pdf\({\bf{f}}\left( {{\bf{x|}}\,{{\bf{x}}_{\bf{0}}}{\bf{,\alpha }}} \right)\) is as follows
\(\begin{array}{l}{\bf{f}}\left( {{\bf{x|}}\,{{\bf{x}}_{\bf{0}}}{\bf{,\alpha }}} \right){\bf{ = }}\frac{{{\bf{\alpha }}{{\bf{x}}_{\bf{0}}}^{\bf{\alpha }}}}{{{{\bf{x}}^{{\bf{\alpha + 1}}}}}}\,{\bf{,x}} \ge {{\bf{x}}_{\bf{0}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\bf{ = }}\,{\bf{0}}\,\,{\bf{,x < }}{{\bf{x}}_{\bf{0}}}\end{array}\)
Show that if X has this Pareto distribution, then the random variable\({\bf{log}}\left( {{\bf{X|}}\,{{\bf{x}}_{\bf{0}}}} \right)\)has the exponential distribution with parameter α.
Short Answer
The random variable\({\rm{log}}\left( {X|\,{x_0}} \right)\) has the exponential distribution with parameter α.