Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the uniform distribution on the interval [0, 1]. Let \({{\bf{Y}}_{\bf{1}}}{\bf{ = min}}\left\{ {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}} \right\}\), \({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left\{ {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}} \right\}\)and \({\bf{W = }}{{\bf{Y}}_{\bf{n}}}{\bf{ - }}{{\bf{Y}}_{\bf{1}}}\). Show that each of the random variables \({{\bf{Y}}_{\bf{1}}}{\bf{,}}{{\bf{Y}}_{\bf{n}}}\,\,{\bf{and}}\,\,{\bf{W}}\) has a beta distribution.

Short Answer

Expert verified

It is proved that,

\({Y_1} \sim Beta\left( {1,n} \right)\),

\({Y_n} \sim Beta\left( {n,1} \right)\),

\(W \sim Beta\left( {n - 1,2} \right)\)

Step by step solution

01

Given information

Here,\({X_1} \ldots {X_n}\)is a random sample from uniform distribution\(U\left( {0,1} \right)\).

\(\begin{array}{l}{Y_1} = \min \left\{ {{X_1} \ldots {X_n}} \right\}\\{Y_n} = \max \left\{ {{X_1} \ldots {X_n}} \right\}\end{array}\)

02

Obtain the PDF and CDF of X

The pdf of a uniform distribution is obtained by using the formula: \(\frac{1}{{b - a}};a \le x \le b\).

Here, \(a = 0,b = 1\).

Therefore, the PDF of X is expressed as,

\({f_x} = \left\{ \begin{array}{l}\frac{1}{{1 - 0}} = 1\;\;\;\;\;\;\;\;\;\;0 \le x \le 1\\0;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\;\;\;\; \ldots \left( 1 \right)\)

The CDF of a uniform distribution is obtained by using the formula:

\(\begin{array}{c}{F_X}\left( x \right) = P\left( {X \le x} \right)\\ = \frac{{x - a}}{{b - a}}\\ = \frac{{x - 0}}{{1 - 0}}\\ = x\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 2 \right)\end{array}\)

The PDF of beta distribution with parameters\({\bf{\alpha }}\,\,{\bf{and}}\,\,{\bf{\beta }}\)is,

\({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}\frac{{{\bf{\Gamma }}\left( {{\bf{\alpha + \beta }}} \right)}}{{{\bf{\Gamma }}\left( {\bf{\alpha }} \right){\bf{\Gamma }}\left( {\bf{\beta }} \right)}}{{\bf{x}}^{{\bf{\alpha - 1}}}}{\left( {{\bf{1 - x}}} \right)^{{\bf{\beta - 1}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\bf{0 < x < 1}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 3 \right)\)

03

Define the result

By following the result, let \({X_1} \ldots {X_n}\)be a random sample of size n from a population with pdf \(f\left( x \right)\)and CDF \(F\left( x \right)\). Then, pdf of r-th order statistic, \({X_{\left( r \right)}}\)is given as:

\(g\left( x \right) = {}^n{C_r}F{\left( x \right)^{r - 1}} \times f\left( x \right) \times {\left( {1 - F\left( x \right)} \right)^{n - r}}\)

04

Obtain the pdf of \({{\bf{Y}}_{\bf{1}}}\)

From equation (1) and (2), following this, the pdf of\({{\bf{Y}}_{\bf{1}}}\)is,

\(\begin{array}{c}g\left( {{y_1}} \right) = {}^n{C_1}F{\left( {{y_1}} \right)^{1 - 1}} \times f\left( y \right) \times {\left( {1 - F\left( y \right)} \right)^{n - 1}}\\ = \left\{ \begin{array}{l}n{\left( {1 - y} \right)^{n - 1}}\;\;\;\;\;\;\;\;0 < y < 1\\0\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\end{array}\)

Consider \(\alpha = 1,\beta = n\) in equation (3), this is the form Beta distribution.

Thus, \({Y_1} \sim Beta\left( {1,n} \right)\).

05

Obtain the pdf of \({{\bf{Y}}_{\bf{n}}}\)

From the equation above, the pdf of \({Y_{\left( n \right)}}\) is,

\(\begin{array}{c}g\left( {{y_n}} \right) = {}^n{C_n}F{\left( y \right)^{n - 1}} \times f\left( y \right) \times {\left( {1 - F\left( y \right)} \right)^{n - n}}\\ = \left\{ \begin{array}{l}n{y^{n - 1}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0 < y < 1\\0\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\end{array}\)

Consider \(\alpha = n,\beta = 1\) in equation (3). This is the form Beta distribution.

Thus, \({Y_n} \sim Beta\left( {n,1} \right)\)

06

Obtain the P.D.F of   \({{\bf{Y}}_{\bf{n}}} - {{\bf{Y}}_{\bf{1}}}\)random variable

Define the random variable \(W = {Y_n} - {Y_1}\) .

The P.D.F for w,

\(\begin{aligned}{}{g_w}\left( y \right) &= n\left( {n - 1} \right){\left( {F\left( {y + w} \right) - F\left( y \right)} \right)^{n - 2}}f\left( {x + w} \right)\\ &= n\left( {n - 1} \right){\left( {y + w - y} \right)^{n - 2}}\left( {1 - w} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;...\left[ {F\left( x \right) = x} \right]\\ &= n\left( {n - 1} \right){\left( w \right)^{n - 2}}\left( {1 - w} \right)\end{aligned}\)

Compare with the beta distribution for \(\alpha = n - 1\) and \(\beta = 2\). Thus, \(W \sim Beta\left( {n - 1,2} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a random sample of 16 observations is drawn from the normal distribution with a mean \({\bf{\mu }}\) and standard deviation of 12 and that independently another random sample of 25 observations is drawn from the normal distribution with the same mean \({\bf{\mu }}\) and standard deviation of 20. Let \(\overline {\bf{X}} \,\,{\bf{and}}\,\,\overline {\bf{Y}} \) denote the sample means of the two samples. Evaluate \({\bf{Pr}}\left( {\left| {\overline {\bf{x}} - \overline {\bf{y}} } \right|{\bf{ < 5}}} \right)\).

Suppose that the measurementXof pressure made bya device in a particular system has the normal distributionwith meanฮผand variance 1, whereฮผis the true pressure.Suppose that the true pressureฮผis unknown but has theuniform distribution on the interval{5,15}. IfX = 8is observed, find the conditional p.d.f. ofฮผgivenX = 8.

Suppose that the random variables X1 and X2 havea bivariate normal distribution, for which the joint p.d.f.is specified by Eq. (5.10.2). Determine the value of the constant b for which \({\bf{Var}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ + b}}{{\bf{X}}_{\bf{2}}}} \right)\)will be a minimum.

Suppose that the two measurements from flea beetles in Example 5.10.2 have the bivariate normal distribution with\({{\bf{\mu }}_{{\bf{1}}{\rm{ }}}} = {\rm{ }}{\bf{201}},{{\bf{\mu }}_{\bf{2}}}{\rm{ }} = {\rm{ }}{\bf{118}},{{\bf{\sigma }}_{\bf{1}}}{\rm{ }} = {\rm{ }}{\bf{15}}.{\bf{2}},{{\bf{\sigma }}_{\bf{2}}}{\rm{ }} = {\rm{ }}{\bf{6}}.{\bf{6}},{\rm{ }}{\bf{and}}\,\,{\bf{\rho }} = {\rm{ }}{\bf{0}}.{\bf{64}}.\)Suppose that the same two measurements from a secondspecies also have the bivariate normal distribution with\({{\bf{\mu }}_{\bf{1}}}{\rm{ }} = {\rm{ }}{\bf{187}},{{\bf{\mu }}_{\bf{2}}}{\rm{ }} = {\rm{ }}{\bf{131}},{{\bf{\sigma }}_{\bf{1}}}{\rm{ }} = {\rm{ }}{\bf{15}}.{\bf{2}},{{\bf{\sigma }}_{\bf{2}}}{\rm{ }} = {\rm{ }}{\bf{6}}.{\bf{6}},{\rm{ }}{\bf{and}}\,\,{\bf{\rho }} = {\rm{ }}{\bf{0}}.{\bf{64}}\). Let\(\left( {{{\bf{X}}_{\bf{1}}},{\rm{ }}{{\bf{X}}_{\bf{2}}}} \right)\) be a pair of measurements on a flea beetle from one of these two species. Let \({{\bf{a}}_{\bf{1}}},{\rm{ }}{{\bf{a}}_{\bf{2}}}\)be constants.

a. For each of the two species, find the mean and standard deviation of \({{\bf{a}}_{\bf{1}}}{{\bf{X}}_{\bf{1}}}{\rm{ }} + {\rm{ }}{{\bf{a}}_{\bf{2}}}{{\bf{X}}_{\bf{2}}}.\)(Note that the variances for the two species will be the same. How do you know that?)

b. Find \({{\bf{a}}_{\bf{1}}},{\rm{ }}{{\bf{a}}_{\bf{2}}}\) to maximize the ratio of the difference between the two means found in part (a) to the standarddeviation found in part (a). There is a sense inwhich this linear combination \({{\bf{a}}_{\bf{1}}}{{\bf{X}}_{\bf{1}}}{\rm{ }} + {\rm{ }}{{\bf{a}}_{\bf{2}}}{{\bf{X}}_{\bf{2}}}.\)does the best job of distinguishing the two species among allpossible linear combinations.

Consider again the two tests A and B described in Exercise2. If a student is chosen at random, and her scoreon test B is 100, what predicted value of her score on test A has the smallest M.S.E., and what is the value of thisminimum M.S.E.?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free