Chapter 5: Q14E (page 345)
Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the uniform distribution on the interval [0, 1]. Let \({{\bf{Y}}_{\bf{1}}}{\bf{ = min}}\left\{ {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}} \right\}\), \({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left\{ {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}} \right\}\)and \({\bf{W = }}{{\bf{Y}}_{\bf{n}}}{\bf{ - }}{{\bf{Y}}_{\bf{1}}}\). Show that each of the random variables \({{\bf{Y}}_{\bf{1}}}{\bf{,}}{{\bf{Y}}_{\bf{n}}}\,\,{\bf{and}}\,\,{\bf{W}}\) has a beta distribution.
Short Answer
It is proved that,
\({Y_1} \sim Beta\left( {1,n} \right)\),
\({Y_n} \sim Beta\left( {n,1} \right)\),
\(W \sim Beta\left( {n - 1,2} \right)\)