Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the diameters of the bolts in a large box follow a normal distribution with a mean of 2 centimeters and a standard deviation of 0.03 centimeters. Also, suppose that the diameters of the holes in the nuts in another large box follow the normal distribution with a mean of 2.02 centimeters and a standard deviation of 0.04 centimeters. A bolt and a nut will fit together if the diameter of the hole in the nut is greater than the diameter of the bolt, and the difference between these diameters is not greater than 0.05 centimeter. If a bolt and a nut are selected at random, what is the probability that they will fit together?

Short Answer

Expert verified

The probability that a bolt and a nut will fit together is 0.3812.

Step by step solution

01

Given information

The bolts' diameter and nuts' diameter follow a normal distribution.

02

Calculate the probability 

Let X denote the diameter of the bolt and Y denote the diameter of the nut.

Y - X have normal distribution and

\[E\left( {Y - X} \right) = 2.02 - 2 = 0.02\]

\[V\left( {Y - X} \right) = 0.0016 + 0.0009 = 0.0025\]

If Z hasa standard normal distribution, then

\[\begin{aligned}{c}Z &= \frac{{\left( {Y - X} \right) - \mu }}{\sigma }\\ &= \frac{{\left( {Y - X} \right) - 0.02}}{{\sqrt {0.0025} }}\\ &= \frac{{\left( {Y - X} \right) - 0.02}}{{0.05}}\end{aligned}\]

Now,

\[\begin{aligned}{c}P\left( {0 < Y - X \le 0.05} \right) &= P\left( { - 0.4 < Z \le 0.06} \right)\\ &= \Phi \left( {0.06} \right) - \Phi \left( { - 0.04} \right)\\ &= \Phi \left( {0.06} \right) - 1 + \Phi \left( {0.04} \right)\\ &= 0.3812\end{aligned}\]

Therefore, the probability that a bolt and a nut will fit together is 0.3812.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that X and Y are independent Poisson random variables such that \({\bf{Var}}\left( {\bf{X}} \right){\bf{ + Var}}\left( {\bf{Y}} \right){\bf{ = 5}}\). Evaluate \({\bf{Pr}}\left( {{\bf{X + Y < 2}}} \right)\).

Evaluate the integral\(\int\limits_0^\infty {{e^{ - 3{x^2}}}dx} \)

Suppose that a die is loaded so that each of the numbers 1, 2, 3, 4, 5, and 6 has a different probability of appearing when the die is rolled. For\({\bf{i = 1, \ldots ,6,}}\)let\({{\bf{p}}_{\bf{i}}}\)denote the probability that the number i will be obtained, and

suppose that\({{\bf{p}}_{\bf{1}}}{\bf{ = 0}}{\bf{.11,}}\,\,{{\bf{p}}_{\bf{2}}}{\bf{ = 0}}{\bf{.30,}}\,\,{{\bf{p}}_{\bf{3}}}{\bf{ = 0}}{\bf{.22,}}\,\,{{\bf{p}}_{\bf{4}}}{\bf{ = 0}}{\bf{.05,}}\,\,{{\bf{p}}_{\bf{5}}}{\bf{ = 0}}{\bf{.25}}\,\,{\bf{and}}\,{{\bf{p}}_{\bf{6}}}{\bf{ = 0}}{\bf{.07}}{\bf{.}}\)Suppose also that the die is to be rolled 40 times. Let\({{\bf{X}}_{\bf{1}}}\)denote the number of rolls for which an even number appears, and let\({{\bf{X}}_2}\)denote the number of rolls for which either the number 1 or the number 3 appears. Find the value of\({\bf{Pr}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ = 20}}\,\,{\bf{and}}\,\,{{\bf{X}}_{\bf{2}}}{\bf{ = 15}}} \right)\).

Suppose that \({X_1}\) and \({X_2}\) have a bivariate normal distribution for which \(E\left( {{X_1}|{X_2}} \right) = 3.7 - 0.15{X_2},\,\,E\left( {{X_2}|{X_1}} \right) = 0.4 - 0.6{X_1}\,\,and\,\,Var\left( {{X_2}|{X_1}} \right) = 3.64\)Find the mean and the variance of\({X_1}\) , the mean and the variance of \({X_2}\), and the correlation of \({X_1}\)and\({X_2}\).

a. Sketch the c.d.f. of the standard normal distribution from the values given in the table at the end of this book.

b. From the sketch given in part (a) of this exercise, sketch the c.d.f. of the normal distribution for which the mean isโˆ’2, and the standard deviation is 3.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free