Consider, once again, the model described in Example \({\bf{7}}{\bf{.5}}{\bf{.10}}{\bf{.}}\) Assume that \({\bf{n = 10}}\) the observed values of \({{\bf{X}}_{\bf{1}}},...,{{\bf{X}}_{{\bf{1}}0}}\) are
\( - 0.92,\,\, - 0.33,\,\, - 0.09,\,\,\,0.27,\,\,\,0.50, - 0.60,\,1.66,\, - 1.86,\,\,\,3.29,\,\,\,2.30\).
a. Fit the model to the observed data using the Gibbs sampling algorithm developed in Exercise. Use the following prior hyperparameters: \({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 0}}\,{\bf{and}}\,{\bf{ }}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 1}}\)
b. For each i, estimate the posterior probability that \({\rm{ }}{{\rm{x}}_i}\)came for the normal distribution with unknown mean and variance.