Chapter 12: Q2E (page 836)
Let \({\bf{f}}\left( {{{\bf{x}}_{{\bf{1}}\,}}{\bf{,}}{{\bf{x}}_{{\bf{2}}\,}}} \right)\) be a joint p.d.f. Suppose that \(\left( {{{\bf{x}}_{{\bf{1}}\,}}^{\left( {\bf{i}} \right)}{\bf{,}}{{\bf{x}}_{{\bf{2}}\,}}^{\left( {\bf{i}} \right)}} \right)\)has the joint p.d.f. Let \(\left( {{{\bf{x}}_{{\bf{1}}\,}}^{\left( {{\bf{i + 1}}} \right)}{\bf{,}}{{\bf{x}}_{{\bf{2}}\,}}^{\left( {{\bf{i + 1}}} \right)}} \right)\)be the result of applying steps \(2\,\,and\,\,3\) of the Gibbs sampling algorithm on-page \({\bf{824}}\). Prove that \(\left( {{{\bf{x}}_{{\bf{1}}\,}}^{\left( {{\bf{i + 1}}} \right)}{\bf{,}}{{\bf{x}}_{{\bf{2}}\,}}^{\left( {\bf{i}} \right)}} \right)\) and \(\left( {{{\bf{x}}_{{\bf{1}}\,}}^{\left( {{\bf{i + 1}}} \right)}{\bf{,}}{{\bf{x}}_{{\bf{2}}\,}}^{\left( {{\bf{i + 1}}} \right)}} \right)\)also have the joint p.d.f. f.
Short Answer
The Gibbs sampling algorithm.
\(\left( {1.} \right)\,\)Pick starting values \({x_2}^{\left( 0 \right)}\) for \(\,{x_2}\) , and let \(\,\,i = 0\,\)
\(\left( {2.} \right)\,\)let be a simulated value from the conditional distribution \(\,{x_1}\)given that \(\,\,{X_1} = {x_2}^{\left( i \right)}\)
\(\left( {3.} \right)\,\)Let\(\,{x_2}^{\left( {i + 1} \right)\,\,}\,\) be a simulated value from the conditional distribution \(\,{x_2}\) given that \(\,{X_1} = {x_1}^{\left( {i + 1} \right)}\)
Use the Gibbs Sampling Algorithm