Chapter 12: Q12E (page 838)
Let \({{\bf{X}}_{\bf{1}}},...,{{\bf{X}}_n}\) be i.i.d. with the normal distribution having mean \(\mu \) and precision \(\tau \).Gibbs sampling allows one to use a prior distribution for \(\left( {\mu ,\tau } \right)\) in which \(\mu \) and\(\tau \) are independent. With mean \({\mu _0}\) and variance, \({\gamma _0}\) Let the prior distribution of \(\tau \)being the gamma distribution with parameters \({\alpha _0}\) and \({\beta _0}\) .
a. Show that the Table \({\bf{12}}{\bf{.8}}\) specifies the appropriate conditional distribution for each parameter given the other.
b. Use the new Mexico nursing home data(Examples \({\bf{12}}{\bf{.5}}{\bf{.2}}\,{\bf{and}}\,{\bf{12}}{\bf{.5}}{\bf{.3}}\) ). Let the prior hyperparameters be \({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 2,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 6300,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 200}}\), and \({\gamma _0} = 6.35 \times {10^{ - 4}}.\) Implement a Gibbs sampler to find the posterior distribution \(\left( {\mu ,\tau } \right).\,\) . In particular, calculate an interval containing \(95\) percent of the posterior distribution of \(\mu \)
Short Answer
Gibbs sampling allows one to use a prior distribution forthe gamma distribution with parameters.
\(\begin{aligned}{l}{\rm{ }}{\tau ^{n/2}}exp\,\left\{ { - \frac{\tau }{2}\left( {n{{\left( {\overline {{x_n}} - \mu } \right)}^2} + {s_n}^2} \right)} \right\}\exp \left\{ { - \frac{{{\gamma _0}}}{2}{{\left( {\mu - {\mu _0}} \right)}^2}} \right\}\\ \times \,\,\,{\tau ^{\alpha - 1}}{\rm{ }}exp{\rm{ }}\left\{ { - \frac{1}{2}\tau {\beta _0}} \right\}.\,\,\,\,\,\,\,(1)\end{aligned}\)
((a) ) Confirm using the product of a constant, prior distribution, and the likelihood
((b)) \((154.1,{\rm{ }}216.4).{\rm{ }}\)