The\(p.d.f.\)of a random variable with Cauchy distribution is
\(f(x) = \frac{1}{{\pi (1 + x)}},\;\;\; - \infty < x < \infty .\)
The cumulative density function is
\(F(x) = \Pr (X \le x) = \int_{ - \infty }^x {\frac{1}{{\pi (1 + y)}}} dy = \left. {\frac{1}{\pi } \cdot \arctan y} \right|_{ - \infty }^x\)
\( = \frac{1}{\pi }\left( {\arctan x + \frac{\pi }{2}} \right),\;\;\; - \infty < x < \infty \)
The quantile function is obtained from
\(q = \frac{1}{\pi }\left( {\arctan x + \frac{\pi }{2}} \right)\)
and it is
\({F^{ - 1}}(q) = \tan \left( {\pi q - \frac{\pi }{2}} \right).\)
The uniform distribution on the interval\([0,1]\)should be used to simulate a random variable with corresponding\(p.d.f.\)'s (probability integral transformation). Let\(U\)be the random variable from uniform distribution on interval\([0,1]\), and
\(X = \tan \left( {\pi U - \frac{\pi }{2}} \right)\)
Thus, simulate \(U\) to obtain the simulation of \(r.v.\)with \(p.d.f.\) from Cauchy distribution.