Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \({\bf{X}}\) has the Cauchy distribution, the mean \({\bf{X}}\)does not exist. What would you expect to happen if you simulated a large number of Cauchy random variables and computed their average?

Short Answer

Expert verified

The average would increase or decrease depending on the observations.

Step by step solution

01

Determine the Cauchy distribution

The Cauchy distribution is the distribution of the\(x - \)intercept of a uniformly distributed angle ray. It is also the mean-zero distribution of the ratio of two independent normally distributed random variables.

02

Determine a large number of Cauchy random variables and computed their average

  • For the Cauchy distribution, it stands that the simulated values would differ, e.g. there would be observed large values, and there would be the observed values that are small.
  • As the number of simulated values of the Cauchy distribution increase, both the number of large and the number of small values would increase and the mean (average) would change depending on the values - it would either increase or decrease; however, it would never be around a concrete number.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the data in table 11.19 on page 762.This time fits the model developed in Example 12.5.6.use the prior hyperparameters \(\,{{\bf{\lambda }}_{\scriptstyle{\bf{0}}\atop\scriptstyle\,}}{\bf{ = }}{{\bf{\alpha }}_{\scriptstyle{\bf{0}}\atop\scriptstyle\,}}\,{\bf{ = 1,}}\,\,{{\bf{\beta }}_{\scriptstyle{\bf{0}}\atop\scriptstyle\,}}{\bf{ = 0}}{\bf{.1}},{{\bf{\mu }}_{\scriptstyle{\bf{0}}\atop\scriptstyle\,}}{\bf{ = 0}}{\bf{.001}}\)and \({{\bf{\psi }}_{\scriptstyle{\bf{0}}\atop\scriptstyle\,}}{\bf{ = 800}}\)obtain a sample of 10,000 from the posterior joint distribution of the parameters. Estimate the posterior mean of the three parameters \({{\bf{\mu }}_{\scriptstyle{\bf{1}}\atop\scriptstyle\,}}{\bf{,}}{{\bf{\mu }}_{\scriptstyle{\bf{2}}\atop\scriptstyle\,}}{\bf{,}}{{\bf{\mu }}_{\scriptstyle{\bf{3}}\atop\scriptstyle\,}}\)

Test the gamma pseudo-random number generator on your computer. Simulate 10,000 gamma pseudo-random variables with parameters a and 1 for \(a = 0.5,1,1.5,2,5,\) 10. Then draw gamma quantile plots

If \({\bf{X}}\)has the \({\bf{p}}.{\bf{d}}.{\bf{f}}.\)\({\bf{1/}}{{\bf{x}}^{\bf{2}}}\)for\({\bf{x > 1}}\), the mean of \({\bf{X}}\) is infinite. What would you expect to happen if you simulated a large number of random variables with this \({\bf{p}}.{\bf{d}}.{\bf{f}}.\) and computed their average?

Consider the power calculation done in Example 9.5.5.

a. Simulate \({v_0} = 1000\) i.i.d. noncentral t pseudo-random variables with 14 degrees of freedom and noncentrality parameter \(1.936.\)

b. Estimate the probability that a noncentral t random variable with 14 degrees of freedom and noncentrality parameter \(1.936\) is at least \(1.761.\) Also, compute the standard simulation error.

c. Suppose that we want our estimator of the noncentral t probability in part (b) to be closer than \(0.01\) the true value with probability \(0.99.\) How many noncentral t random variables do we need to simulate?

Let \({x_1},...,{x_n}\) be the observed values of a random sample \(X = \left( {{x_1},...,{x_n}} \right)\) . Let \({F_n}\)be the sample c.d.f. Let \(\,{j_1},...\,,{j_n}\) be a random sample with replacement from the numbers \(\left\{ {1,.....,n} \right\}\) Define\({x_i}^ * = x{j_i}\) for \(i = 1,..,n.\)ashow that \({x^ * } = \left( {{x_1}^ * ,...,{x_n}^ * } \right)\) is an i.i.d. sample from the distribution\({F_n}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free