Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assume that one can simulate as many \({\bf{i}}.{\bf{i}}.{\bf{d}}.\)exponential random variables with parameters\({\bf{1}}\) as one wishes. Explain how one could use simulation to approximate the mean of the exponential distribution with parameters\({\bf{1}}\).

Short Answer

Expert verified

Take the average of \(n\) simulated exponential random variables, which \(n\) is sufficiently large.

Step by step solution

01

Step 1:Definition for the exponential distribution:

  • The probability distribution of the time *between* the events in a Poisson process is defined as an exponential distribution.
  • When you think about it, the amount of time until the event occurs means that not a single event has occurred during the waiting period.
  • In other words, this is Poisson\(\left( {X = 0} \right).\)
02

To determine the exponential distribution with parameters\({\bf{1}}\):

  • The mean can be obtained by simulating random variables from an exponential distribution with parameters\(1\), e.g.\(n = 1000\), and taking their average.
  • For example, use command rexp in the programming language\(R\).
  • The number of generated random numbers should be large.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let X and Y be independent random variables with \(X\) having the t distribution with five degrees of freedom and Y having the t distribution with three degrees of freedom. We are interested in \(E\left( {|X - Y|} \right).\)

a. Simulate 1000 pairs of \(\left( {{X_i},{Y_i}} \right)\) each with the above joint distribution and estimate \(E\left( {|X - Y|} \right).\)

b. Use your 1000 simulated pairs to estimate the variance of \(|X - Y|\) also.

c. Based on your estimated variance, how many simulations would you need to be 99 percent confident that your estimator is within the actual mean?

Test the gamma pseudo-random number generator on your computer. Simulate 10,000 gamma pseudo-random variables with parameters a and 1 for \(a = 0.5,1,1.5,2,5,\) 10. Then draw gamma quantile plots

The skewness of a random variable was defined in Definition 4.4.1. Suppose that \({X_1},...,{X_n}\) form a random sample from a distribution \(F\). The sample skewness is defined as

\({M_3} = \frac{{\frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \bar X} \right)}^3}} }}{{{{\left( {\frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \bar X} \right)}^2}} } \right)}^{3/2}}}}\)

One might use \({M_3}\) as an estimator of the skewness \(\theta \) of the distribution F. The bootstrap can estimate the bias and standard deviation of the sample skewness as an estimator \(\theta \).

a. Prove that \({M_3}\) is the skewness of the sample distribution \({F_{{n^*}}}\)

b. Use the 1970 fish price data in Table 11.6 on page 707. Compute the sample skewness and then simulate 1000 bootstrap samples. Use the bootstrap samples to estimate the bias and standard deviation of the sample skewness.

Use the data in Table 10.6 on page 640. We are interested in the bias of the sample median as an estimator of the median of the distribution.

a. Use the non-parametric bootstrap to estimate this bias.

b. How many bootstrap samples does it appear that you need in order to estimate the bias to within .05 with a probability of 0.99?

Use the data on fish prices in Table 11.6 on page 707. Suppose that we assume only that the distribution of fish prices in 1970 and 1980 is a continuous joint distribution with finite variances. We are interested in the properties of the sample correlation coefficient. Construct 1000 nonparametric bootstrap samples for solving this exercise.

a. Approximate the bootstrap estimate of the variance of the sample correlation.

b. Approximate the bootstrap estimate of the bias of the sample correlation.

c. Compute simulation standard errors of each of the above bootstrap estimates.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free