Chapter 12: Q11E (page 838)
Consider, once again, the model described in Example \({\bf{7}}{\bf{.5}}{\bf{.10}}{\bf{.}}\) Assume that \({\bf{n = 10}}\) the observed values of \({{\bf{X}}_{\bf{1}}},...,{{\bf{X}}_{{\bf{1}}0}}\) are
\( - 0.92,\,\, - 0.33,\,\, - 0.09,\,\,\,0.27,\,\,\,0.50, - 0.60,\,1.66,\, - 1.86,\,\,\,3.29,\,\,\,2.30\).
a. Fit the model to the observed data using the Gibbs sampling algorithm developed in Exercise. Use the following prior hyperparameters: \({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 0}}\,{\bf{and}}\,{\bf{ }}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 1}}\)
b. For each i, estimate the posterior probability that \({\rm{ }}{{\rm{x}}_i}\)came for the normal distribution with unknown mean and variance.
Short Answer
a) The Gibbs Sampling Algorithm: The steps of the algorithm are
\(\left( {1.} \right)\,\)Pick starting values \({x_2}^{\left( 0 \right)}\) for \(\,{x_2}\) , and let \(\,\,i = 0\,\)
b) Total of \(i = 1,2,...,10\)estimations of the posterior probability.
((a)) Use Gibbs Algorithm.
((b)) \(0.286,{\rm{ }}0.289,{\rm{ }}0.306,{\rm{ }}0.341,{\rm{ }}0.365,{\rm{ }}0.285,{\rm{ }}0.659,{\rm{ }}0.378,{\rm{ }}0.951,{\rm{ }}0.826\)