Question: Consider the calorie count data described in Example7.3.10 on page 400. Now assume that each observation has the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) given the parameter \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\). Use the normal-gamma conjugate prior distribution with prior hyper parameters
\({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 60,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 0}}\,\,{\bf{and}}\,\,{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 1}}\)The value of \({{\bf{s}}_{\bf{n}}}^{\bf{2}}\) is 2102.9.
a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)
b. Compute \({\bf{Pr(\mu > 1|x)}}{\bf{.}}\)