Chapter 8: Q5E (page 527)
Question: Suppose a random variable X has the Poisson distribution with an unknown mean \({\bf{\lambda }}\) (\({\bf{\lambda }}\)>0). Find a statistic \({\bf{\delta }}\left( {\bf{X}} \right)\) that will be an unbiased estimator of \({{\bf{e}}^{\bf{\lambda }}}\).Hint: If \({\bf{E}}\left( {{\bf{\delta }}\left( {\bf{X}} \right)} \right){\bf{ = }}{{\bf{e}}^{\bf{\lambda }}}\) , then \(\sum\limits_{{\bf{x = 0}}}^\infty {\frac{{{\bf{\delta }}\left( {\bf{x}} \right){{\bf{e}}^{{\bf{ - \lambda }}}}{{\bf{\lambda }}^{\bf{x}}}}}{{{\bf{x!}}}}} = {{\bf{e}}^{\bf{\lambda }}}\)
Multiply both sides of this equation by \({{\bf{e}}^{\bf{\lambda }}}\)expanding the right side in a power series in \({\bf{\lambda }}\), and then equate the coefficients of \({{\bf{\lambda }}^{\bf{x}}}\) on both sides of the equation for x = 0, 1, 2, . . ..
Short Answer
\(\delta \left( x \right) = {2^x}\)