Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a point(X, Y )is to be chosen at random in thexy-plane, whereXandYare independent random variables, and each has the standard normal distribution. If a circle is drawn in thexy-plane with its center at the origin, what is the radius of the smallest circle that can be chosen for there to be a probability of 0.99 that the point(X, Y )will lie inside the circle?

Short Answer

Expert verified

The radius of the smallest circle is 9.210

Step by step solution

01

Given information

XandYare independent random variables, and each has the standard normal distribution

02

Calculating the radius

Let r denote the radius of the circle. The point (X, Y) will lie inside the circle if and only if \({X^2} + {Y^2} < {r^2}\) . It also \({X^2} + {Y^2}\)has \({\chi ^2}\) a distribution with two degrees of freedom.

The smallest circle that can be chosen for there to be a probability of 0.99

\(\begin{align}P\left( {{X^2} + {Y^2} < {r^2}} \right) &= 0.99\\p\left( {{\chi ^2}(2) < {r^2}} \right) &= 0.99\\{r^2} &= 9.210\end{align}\)

Therefore, they must have \({r^2} \ge 9.210\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose thatX1, . . . , Xnform a random sample from the normal distribution with meanμand variance \({\sigma ^2}\). Find the distribution of

\(\frac{{n{{\left( {{{\bar X}_n} - \mu } \right)}^2}}}{{{\sigma ^2}}}\).

Determine whether or not each of the five following matrices is orthogonal:

  1. \(\left( {\begin{align}{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{align}} \right)\)
  2. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{ - 1}}}&{\bf{0}}\end{align}} \right)\)
  3. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{0}}{\bf{.5}}}&{\bf{0}}\end{align}} \right)\)
  4. \(\left( {\begin{align}{}{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\end{align}} \right)\)
  5. \(\left( {\begin{align}{}{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}\end{align}} \right)\)

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with known mean μ and unknown precision \(\tau \left( {\tau > 0} \right)\). Suppose also that the prior distribution of \(\tau \) is the gamma distribution with parameters\({\alpha _0}\,\,\,{\rm{and}}\,\,\,\,{\beta _0}\left( {{\alpha _0} > 0\,\,\,{\rm{and}}\,\,\,{\beta _0} > 0} \right)\) . Show that the posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).

Question: Suppose a random variable X has the Poisson distribution with an unknown mean \({\bf{\lambda }}\) (\({\bf{\lambda }}\)>0). Find a statistic \({\bf{\delta }}\left( {\bf{X}} \right)\) that will be an unbiased estimator of \({{\bf{e}}^{\bf{\lambda }}}\).Hint: If \({\bf{E}}\left( {{\bf{\delta }}\left( {\bf{X}} \right)} \right){\bf{ = }}{{\bf{e}}^{\bf{\lambda }}}\) , then \(\sum\limits_{{\bf{x = 0}}}^\infty {\frac{{{\bf{\delta }}\left( {\bf{x}} \right){{\bf{e}}^{{\bf{ - \lambda }}}}{{\bf{\lambda }}^{\bf{x}}}}}{{{\bf{x!}}}}} = {{\bf{e}}^{\bf{\lambda }}}\)

Multiply both sides of this equation by \({{\bf{e}}^{\bf{\lambda }}}\)expanding the right side in a power series in \({\bf{\lambda }}\), and then equate the coefficients of \({{\bf{\lambda }}^{\bf{x}}}\) on both sides of the equation for x = 0, 1, 2, . . ..

Suppose a random variable has a normal distribution with a mean of 0 and an unknown standard deviation σ> 0. Find the Fisher information I (σ) in X.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free