Let \(X = {X_1}\)
From the definition,
\(\begin{array}{c}{I_x}\left( \theta \right) = {E_\theta }\left( {{{\left( {\frac{\partial }{{\partial \theta }}\log f\left( {X|\theta } \right)} \right)}^2}} \right)\\ = {E_\theta }\left( {{{\left( {\frac{X}{\theta } - 1} \right)}^2}} \right)\\ = Va{r_\theta }\left( {\frac{X}{\theta }} \right)\,\,\,\left( {\,{\rm{Since}}\,\,{\rm{E}}\left( {\frac{{\rm{X}}}{{\rm{\theta }}}} \right){\rm{ = }}\frac{{{\rm{E}}\left( {\rm{X}} \right)}}{{\rm{\theta }}}{\rm{ = 1}}} \right)\end{array}\)
\(\begin{array}{c} = \frac{{Va{r_\theta }\left( X \right)}}{{{\theta ^2}}}\\ = \frac{\theta }{{{\theta ^2}}}\\ = \frac{1}{\theta }\end{array}\)
We know that
\(\begin{array}{c}{I_x}\left( \theta \right) = n{I_x}_{_1}\left( \theta \right)\\ = \frac{n}{\theta }\end{array}\)
Therefore, the Fisher Information is \(\frac{n}{\theta }\)