Chapter 8: Q20E (page 506)
Question: Consider the calorie count data described in Example7.3.10 on page 400. Now assume that each observation has the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) given the parameter \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\). Use the normal-gamma conjugate prior distribution with prior hyper parameters
\({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 60,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 0}}\,\,{\bf{and}}\,\,{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 1}}\)The value of \({{\bf{s}}_{\bf{n}}}^{\bf{2}}\) is 2102.9.
a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)
b. Compute \({\bf{Pr(\mu > 1|x)}}{\bf{.}}\)
Short Answer
(a) \({\mu _1} = 0.109,{\lambda _1} = 21,{\alpha _1} = 11,{\beta _1} = 1111.45\)
(b) \(0.3403\)