Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider the calorie count data described in Example7.3.10 on page 400. Now assume that each observation has the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) given the parameter \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\). Use the normal-gamma conjugate prior distribution with prior hyper parameters

\({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 60,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 0}}\,\,{\bf{and}}\,\,{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 1}}\)The value of \({{\bf{s}}_{\bf{n}}}^{\bf{2}}\) is 2102.9.

a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)

b. Compute \({\bf{Pr(\mu > 1|x)}}{\bf{.}}\)

Short Answer

Expert verified

(a) \({\mu _1} = 0.109,{\lambda _1} = 21,{\alpha _1} = 11,{\beta _1} = 1111.45\)

(b) \(0.3403\)

Step by step solution

01

Given information

It is given that two variables \(\mu \,\,and\,\,\tau \)have the joint normal-gamma distribution such that\({\alpha _0} = 1,{\beta _0} = 60,{\mu _0} = 0\,\,and\,\,{\lambda _0} = 1\).The value of \({s_n}^2\) is 2102.9 and \(\overline {{x_n}} = 0.1154,\,\,{\sigma ^2} = 4.62\). n=20 in the question.

02

Define Normal-Gamma distribution

Let \(\mu \,\,and\,\,\tau \) be random variables. Suppose that the conditional distribution of \(\mu \,\,given\,\,\tau \) is the normal distribution with mean \({\mu _0}\) and precision \({\lambda _0}\tau \) . Suppose also that the marginal distribution of \(\,\tau \) is the gamma distribution with parameters \({\alpha _0}\,\,and\,\,{\beta _0}\). Then we say that the joint distribution of\(\mu \,\,and\,\,\tau \) is the normal-gamma distribution with hyper parameters \({\mu _0},{\lambda _0},{\alpha _0},{\beta _0}\).

03

Define the new variables

We know that,

\(\begin{aligned}{}{\mu _1} &= \frac{{{\lambda _0}{\mu _0} + n\overline {{x_n}} }}{{{\lambda _0} + n}}\\{\lambda _1} &= {\lambda _0} + n\\{\alpha _1} &= {\alpha _0} + \frac{n}{2}\\{\beta _1} &= {\beta _0} + \frac{{{s_n}^2}}{2} + \frac{{n{\lambda _0}{{\left( {\overline {{x_n}} - {\mu _0}} \right)}^2}}}{{2\left( {{\lambda _0} + n} \right)}}\end{aligned}\)

04

Substitute the values

a)

\(\begin{aligned}{}{\mu _1} &= \frac{{1 \times 0 + 20 \times 0.1154}}{{1 + 20}}\\ &= 0.109\\{\lambda _1} &= 1 + 20\\ &= 21\\{\alpha _1} &= 1 + \frac{{20}}{2}\\ &= 11\\{\beta _1} &= 60 + \frac{{2102.9}}{2} + \frac{{20 \times 1 \times {{\left( {0.1154 - 0} \right)}^2}}}{{2\left( {1 + 20} \right)}}\\ &= 1111.45\end{aligned}\)

05

Calculate the probability

b.

\(\begin{aligned}{}\Pr (\mu > {\bf{ }}1|x) &= 1 - \Phi \left( {\frac{{1 - 0.1154}}{{\sqrt {4.62} }}} \right)\\ &= 1 - \Phi \left( {1.12} \right)\\ &= 0.3403\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the Poisson distribution with unknown mean ฮธ, and let

\({\bf{Y = }}\sum\nolimits_{{\bf{i = 1}}}^{\bf{n}} {{{\bf{X}}_{\bf{i}}}} \).

a. Determine the value of a constant c such that the estimator\({{\bf{e}}^{{\bf{ - cY}}}}\)is an unbiased estimator of\({{\bf{e}}^{{\bf{ - \theta }}}}\).

b. Use the information inequality to obtain a lower bound for the variance of the unbiased estimator found in part (a).

Question:Suppose that a random variable X has the geometric distribution with an unknown parameter p (0<p<1). Show that the only unbiased estimator of p is the estimator \({\bf{\delta }}\left( {\bf{X}} \right)\) such that \({\bf{\delta }}\left( {\bf{0}} \right){\bf{ = 1}}\) and \({\bf{\delta }}\left( {\bf{X}} \right){\bf{ = 0}}\) forX>0.

Find the mode of theฯ‡2 distribution withmdegrees offreedom(m=1,2, . . .).

Suppose that \({X_1},...,{X_n}\) form a random sample from the Bernoulli distribution with parameter p. Let \({\bar X_n}\) be the sample average. Use the variance stabilizing transformation found in Exercise 5 of Section 6.5 to construct an approximate coefficient ฮณ confidence interval for p

Question:Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the uniform distribution on the interval (0, ฮธ), where the value of the parameter ฮธ is unknown; and let\({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{{\bf{X}}_{\bf{n}}}} \right)\). Show that\(\left( {\frac{{\left( {{\bf{n + 1}}} \right)}}{{\bf{n}}}} \right){{\bf{Y}}_{\bf{n}}}\) is an unbiased estimator of ฮธ.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free