Chapter 8: Q19E (page 506)
Question: Consider the situation described in Exercise 7 of Sec. 8.5. Use a prior distribution from the normal-gamma family with values \({{\bf{\mu }}_{\bf{0}}}{\bf{ = 150,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 0}}{\bf{.5,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 4}}\)
a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau = }}\frac{{\bf{1}}}{{{{\bf{\sigma }}^{\bf{2}}}}}\)
b. Find an interval (a, b) such that the posterior probability is 0.90 that a <\({\bf{\mu }}\)<b.
Short Answer
(a) Normal-gamma with hyperparameters \({\mu _1} = 156.7,{\lambda _1} = 20.5,{\alpha _1} = 11,{\beta _1} = 4885.7\)
(b) (148.7, 164.7).