Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider the situation described in Exercise 7 of Sec. 8.5. Use a prior distribution from the normal-gamma family with values \({{\bf{\mu }}_{\bf{0}}}{\bf{ = 150,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 0}}{\bf{.5,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 4}}\)

a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau = }}\frac{{\bf{1}}}{{{{\bf{\sigma }}^{\bf{2}}}}}\)

b. Find an interval (a, b) such that the posterior probability is 0.90 that a <\({\bf{\mu }}\)<b.

Short Answer

Expert verified

(a) Normal-gamma with hyperparameters \({\mu _1} = 156.7,{\lambda _1} = 20.5,{\alpha _1} = 11,{\beta _1} = 4885.7\)

(b) (148.7, 164.7).

Step by step solution

01

Given information

It is given that two variables \(\mu \,\,{\rm{and}}\,\,\tau \)have the joint normal-gamma distribution such that \({\mu _0} = 150,{\lambda _0} = 0.5,{\alpha _0} = 1,{\beta _0} = 4\).

The points described in Exercise 7 of Sec. 8.5 are: 186, 181, 176, 149, 184, 190, 158, 139, 175, 148, 152, 111, 141, 153, 190, 157, 131, 149, 135, 132.

02

Define Normal-Gamma distribution

Let \(\mu \,\,{\rm{and}}\,\,\tau \) be random variables. Suppose that the conditional distribution of \(\mu \,\,{\rm{given}}\,\,\tau \) is the normal distribution with mean \({\mu _0}\) and precision \({\lambda _0}\tau \) .

Suppose also that the marginal distribution of \(\,\tau \) is the gamma distribution with parameters \({\alpha _0}\,\,{\rm{and}}\,\,{\beta _0}\).

Then we say that the joint distribution of\(\mu \,\,and\,\,\tau \) is the normal-gamma distribution with hyperparameters \({\mu _0},{\lambda _0},{\alpha _0},{\beta _0}\).

03

Define the posterior variables

We know that,

\(\begin{aligned}{}{\mu _1} &= \frac{{{\lambda _0}{\mu _0} + n\overline {{x_n}} }}{{{\lambda _0} + n}}\\{\lambda _1} &= {\lambda _0} + n\\{\alpha _1} &= {\alpha _0} + \frac{n}{2}\\{\beta _1} &= {\beta _0} + \frac{{{s_n}^2}}{2} + \frac{{n{\lambda _0}{{\left( {\overline {{x_n}} - {\mu _0}} \right)}^2}}}{{2\left( {{\lambda _0} + n} \right)}}\end{aligned}\)

Also, the values of:

\(\begin{aligned}{}\overline {{x_n}} &= \frac{{186 + 181 + {\rm{ }} \ldots + {\rm{ }}135 + {\rm{ }}132}}{{20}}\\ &= 156.85\end{aligned}\)

\(\begin{aligned}{}{s_n}^2 &= \frac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline {{x_n}} } \right)}^2}} }}{{n - 1}}\\ &= \frac{{5315.525}}{{19}}\\ &= 279.7645\end{aligned}\)

04

(a) Substitute the values

\(\begin{aligned}{}{\mu _1} &= \frac{{150 \times 0.5 + 20 \times 156.85}}{{1 + 20}}\\ &= 156.7\\{\lambda _1} &= 0.5 + 20\\ &= 20.5\end{aligned}\)

\(\begin{aligned}{}{\alpha _1} &= 1 + \frac{{20}}{2}\\ &= 11\\{\beta _1} &= 4 + \frac{{279.76}}{2} + \frac{{20 \times 0.5 \times {{\left( {156.85 - 150} \right)}^2}}}{{2\left( {0.5 + 20} \right)}}\\ &= 4885.7\end{aligned}\)

Therefore, the answer is: \({\mu _1} = 156.7,{\lambda _1} = 20.5,{\alpha _1} = 11,{\beta _1} = 4885.7\)

05

(b) Define a new variable

Let,

\(\begin{aligned}{}U &= {\left( {\frac{{{\lambda _1}{\alpha _1}}}{{{\beta _1}}}} \right)^{\frac{1}{2}}}\left( {\mu - {\mu _1}} \right)\\ &= 0.5939\left( {\mu - 156.7} \right)\end{aligned}\)

Here U follows t distribution with \(2{\alpha _1}\) degrees of freedom, that is 22.

Now,

\(\begin{aligned}{}P\left( {a < \mu < b} \right) &= 0.90\\ \Rightarrow P\left( {0.5939\left( {a - 156.7} \right) < 0.5939\left( {\mu - 156.7} \right) < 0.5939\left( {b - 156.7} \right)} \right) &= 0.90\\ \Rightarrow P\left( {0.5939\left( {a - 156.7} \right) < U < 0.5939\left( {b - 156.7} \right)} \right) &= 0.90\end{aligned}\)

The confidence intervals derived for U are -1.71714and 1.71714

Therefore, the value of a and b is,

\(\begin{aligned}{}0.5939\left( {a - 156.7} \right) &= - {\rm{1}}{\rm{.71714}}\\ \Rightarrow a &= 148.7\end{aligned}\)

And,

\(\begin{aligned}{}0.5939\left( {b - 156.7} \right) &= {\rm{1}}{\rm{.71714}}\\ \Rightarrow b &= 164.7\end{aligned}\)

Therefore, the interval is (148.7, 164.7).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that X1,โ€ฆ.., Xn forms a random sample from the Bernoulli distribution with unknown parameter p. Show thatXฬ„n is an efficient estimator of p.

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with known mean ฮผ and unknown precision \(\tau \left( {\tau > 0} \right)\). Suppose also that the prior distribution of \(\tau \) is the gamma distribution with parameters\({\alpha _0}\,\,\,{\rm{and}}\,\,\,\,{\beta _0}\left( {{\alpha _0} > 0\,\,\,{\rm{and}}\,\,\,{\beta _0} > 0} \right)\) . Show that the posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).

Continue the analysis in Example 8.6.2 on page 498. Compute an interval (a, b) such that the posterior probability is 0.9 that a <ฮผ<b. Compare this interval with the 90% confidence interval from Example 8.5.4 on page 487.

Assume thatX1, . . . , Xnfrom a random sample from the normal distribution with meanฮผand variance \({\sigma ^2}\). Show that \({\hat \sigma ^2}\)has the gamma distribution with parameters \(\frac{{\left( {n - 1} \right)}}{2}\)and\(\frac{n}{{\left( {2{\sigma ^2}} \right)}}\).

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\), and also that the joint prior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) is the normal-gamma distribution satisfying the following conditions: \({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,\,\,{\bf{,E}}\left( {\bf{\tau }} \right){\bf{ = 2,E}}\left( {{{\bf{\tau }}^{\bf{2}}}} \right){\bf{ = 5}}\,\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {\left| {\bf{\mu }} \right|{\bf{ < 1}}{\bf{.412}}} \right){\bf{ = 0}}{\bf{.5}}\)Determine the prior hyperparameters \({{\bf{\mu }}_{\bf{0}}}{\bf{,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{,}}{{\bf{\beta }}_{\bf{0}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free