Chapter 8: Q16SE (page 529)
Suppose that a random variable X has the exponential distribution with meanθ, which is unknown(θ >0). Find the Fisher informationI(θ)inX.
Short Answer
The fisher information for the random variable X is 1/θ2.
Chapter 8: Q16SE (page 529)
Suppose that a random variable X has the exponential distribution with meanθ, which is unknown(θ >0). Find the Fisher informationI(θ)inX.
The fisher information for the random variable X is 1/θ2.
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the conditions of Exercise 2, how large a random sample must be taken in order that\({\bf{P}}\left( {{\bf{|}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - \theta |}} \le {\bf{0}}{\bf{.1}}} \right) \ge {\bf{0}}{\bf{.95}}\)for every possible value ofθ?
Suppose that\({X_1}...{X_n}\)form a random sample from the normal distribution with mean 0 and unknown standard deviation\(\sigma > 0\). Find the lower bound specified by the information inequality for the variance of any unbiased estimator of\(\log \sigma \).
Question:Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the uniform distribution on the interval (0, θ), where the value of the parameter θ is unknown; and let\({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{{\bf{X}}_{\bf{n}}}} \right)\). Show that\(\left( {\frac{{\left( {{\bf{n + 1}}} \right)}}{{\bf{n}}}} \right){{\bf{Y}}_{\bf{n}}}\) is an unbiased estimator of θ.
Suppose that X1,……,Xn form a random sample from a normal distribution for which the mean is known and the variance is unknown. Construct an efficient estimator that is not identically equal to a constant, and determine the expectation and the variance of this estimator.
Suppose that a random sample is to be taken from the Bernoulli distribution with an unknown parameter,p. Suppose also that it is believed that the value ofpis in the neighborhood of 0.2. How large must a random sample be taken so that\(P\left( {{\bf{|}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - p|}}} \right) \ge 0.75\)when p=0.2?
What do you think about this solution?
We value your feedback to improve our textbook solutions.