The probability density function of X is,
\(f\left( x \right) = \frac{1}{\theta }\)
For,\(0 < y < \theta \)
The c.d.f. of\({Y_n}\)is,
\(\begin{aligned}{}F\left( {y\left| \theta \right.} \right) &= P\left( {Y \le y\left| \theta \right.} \right)\\ &= P\left( {{X_1} \le y,...,{X_n} \le y\left| \theta \right.} \right)\\ &= {\left( {\frac{y}{\theta }} \right)^n}\end{aligned}\)
The p.d.f. of\({Y_n}\)is,
\(\begin{aligned}{}f\left( {y\left| \theta \right.} \right) &= \frac{d}{{dy}}F\left( {y\left| \theta \right.} \right)\\ &= \frac{d}{{dy}}{\left( {\frac{y}{\theta }} \right)^n}\\ &= \frac{{n{y^{n - 1}}}}{{{\theta ^n}}}\end{aligned}\)
Then,
\(\begin{aligned}{}{E_\theta }\left( {{Y_n}} \right) &= \int_0^\theta {yf\left( {y\left| \theta \right.} \right)} dy\\ &= \int_0^\theta {y\frac{{n{y^{n - 1}}}}{{{\theta ^n}}}dy} \\ &= \frac{n}{{{\theta ^n}}}\int_0^\theta {{y^n}dy} \end{aligned}\)
\(\begin{aligned}{} &= \frac{n}{{{\theta ^n}}}\left[ {\frac{{{y^{n + 1}}}}{{n + 1}}} \right]_0^\theta \\ &= \frac{n}{{{\theta ^n}}} \times \frac{{{\theta ^{n + 1}}}}{{\left( {n + 1} \right)}}\\ &= \frac{n}{{\left( {n + 1} \right)}}\theta \end{aligned}\)
Hence,
\({E_\theta }\left[ {\left( {\frac{{\left( {n + 1} \right)}}{n}} \right){Y_n}} \right] = \theta \)
This means that,
Hence, \(\left( {\frac{{\left( {n + 1} \right)}}{n}} \right){Y_n}\) is an unbiased estimator of \(\theta \)