Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the uniform distribution on the interval (0, θ), where the value of the parameter θ is unknown; and let\({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{{\bf{X}}_{\bf{n}}}} \right)\). Show that\(\left( {\frac{{\left( {{\bf{n + 1}}} \right)}}{{\bf{n}}}} \right){{\bf{Y}}_{\bf{n}}}\) is an unbiased estimator of θ.

Short Answer

Expert verified

Proved. \(\left( {\frac{{\left( {n + 1} \right)}}{n}} \right){Y_n}\) is an unbiased estimator of \(\theta \)

Step by step solution

01

Given information

\({X_1},...,{X_n}\)are a random sample from a uniform distribution on the interval\(\left[ {0,\theta } \right]\)

\({Y_n} = \max \left( {{X_1},...{X_n}} \right)\)

02

Finding the unbiased estimator

The probability density function of X is,

\(f\left( x \right) = \frac{1}{\theta }\)

For,\(0 < y < \theta \)

The c.d.f. of\({Y_n}\)is,

\(\begin{aligned}{}F\left( {y\left| \theta \right.} \right) &= P\left( {Y \le y\left| \theta \right.} \right)\\ &= P\left( {{X_1} \le y,...,{X_n} \le y\left| \theta \right.} \right)\\ &= {\left( {\frac{y}{\theta }} \right)^n}\end{aligned}\)

The p.d.f. of\({Y_n}\)is,

\(\begin{aligned}{}f\left( {y\left| \theta \right.} \right) &= \frac{d}{{dy}}F\left( {y\left| \theta \right.} \right)\\ &= \frac{d}{{dy}}{\left( {\frac{y}{\theta }} \right)^n}\\ &= \frac{{n{y^{n - 1}}}}{{{\theta ^n}}}\end{aligned}\)

Then,

\(\begin{aligned}{}{E_\theta }\left( {{Y_n}} \right) &= \int_0^\theta {yf\left( {y\left| \theta \right.} \right)} dy\\ &= \int_0^\theta {y\frac{{n{y^{n - 1}}}}{{{\theta ^n}}}dy} \\ &= \frac{n}{{{\theta ^n}}}\int_0^\theta {{y^n}dy} \end{aligned}\)

\(\begin{aligned}{} &= \frac{n}{{{\theta ^n}}}\left[ {\frac{{{y^{n + 1}}}}{{n + 1}}} \right]_0^\theta \\ &= \frac{n}{{{\theta ^n}}} \times \frac{{{\theta ^{n + 1}}}}{{\left( {n + 1} \right)}}\\ &= \frac{n}{{\left( {n + 1} \right)}}\theta \end{aligned}\)

Hence,

\({E_\theta }\left[ {\left( {\frac{{\left( {n + 1} \right)}}{n}} \right){Y_n}} \right] = \theta \)

This means that,

Hence, \(\left( {\frac{{\left( {n + 1} \right)}}{n}} \right){Y_n}\) is an unbiased estimator of \(\theta \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether or not each of the five following matrices is orthogonal:

  1. \(\left( {\begin{align}{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{align}} \right)\)
  2. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{ - 1}}}&{\bf{0}}\end{align}} \right)\)
  3. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{0}}{\bf{.5}}}&{\bf{0}}\end{align}} \right)\)
  4. \(\left( {\begin{align}{}{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\end{align}} \right)\)
  5. \(\left( {\begin{align}{}{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}\end{align}} \right)\)

Suppose that\({X_1},...,{X_n}\)form a random sample from the normal distribution with unknown mean μ and unknown variance\({\sigma ^2}\). Describe a method for constructing a confidence interval for\({\sigma ^2}\)with a specified confidence coefficient\(\gamma \left( {0 < \gamma < 1} \right)\) .

Question: Prove the limit formula Eq. (8.4.6).

Suppose that\({X_1}...{X_n}\)form a random sample from an exponential family for which the p.d.f. or the p.f.\(f\left( {x|\theta } \right)\)is as specified in Exercise 23 of Sec. 7.3. Suppose also that the unknown value of\(\theta \)must belong to an open interval\(\Omega \)of the real line. Show that the estimator\(T = \sum\limits_{i = 1}^n {d\left( {{X_i}} \right)} \)is an efficient estimator. Hint: Show that T can be represented in the form given in Eq. (8.8.15).

Question: Consider the situation described in Exercise 7 of Sec. 8.5. Use a prior distribution from the normal-gamma family with values \({{\bf{\mu }}_{\bf{0}}}{\bf{ = 150,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 0}}{\bf{.5,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 4}}\)

a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau = }}\frac{{\bf{1}}}{{{{\bf{\sigma }}^{\bf{2}}}}}\)

b. Find an interval (a, b) such that the posterior probability is 0.90 that a <\({\bf{\mu }}\)<b.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free