Chapter 8: Q13E (page 464)
Question:Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from a distribution for which the p.d.f. or the p.f. is f (x|θ ), where the value of the parameter θ is unknown. Let\({\bf{X = }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}} \right)\)and let T be a statistic. Assuming that δ(X) is an unbiased estimator of θ, it does not depend on θ. (If T is a sufficient statistic defined in Sec. 7.7, then this will be true for every estimator δ. The condition also holds in other examples.) Let\({{\bf{\delta }}_{\bf{0}}}\left( {\bf{T}} \right)\)denote the conditional mean of δ(X) given T.
a. Show that\({{\bf{\delta }}_{\bf{0}}}\left( {\bf{T}} \right)\)is also an unbiased estimator of θ.
b. Show that\({\bf{Va}}{{\bf{r}}_{\bf{\theta }}}\left( {{{\bf{\delta }}_{\bf{0}}}} \right) \le {\bf{Va}}{{\bf{r}}_{\bf{\theta }}}\left( {\bf{\delta }} \right)\)for every possible value of θ. Hint: Use the result of Exercise 11 in Sec. 4.7.
Short Answer
a. Proved.\({\delta _0}\left( T \right)\)is an unbiased estimator of\(\theta \)
b. Proved. \(Va{r_\theta }\left( {\delta \left( X \right)} \right) \ge Va{r_\theta }\left( {{\delta _0}\left( X \right)} \right)\)