Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If a random variableXhas the\({\chi ^2}\)distribution withmdegrees of freedom, then the distribution of\({X^{\frac{1}{2}}}\)is called achi(\(\chi \)) distribution with m degrees of freedom. Determinethe mean of this distribution.

Short Answer

Expert verified

\(E\left( {{X^{\frac{1}{2}}}} \right) = \frac{{\sqrt 2 \Gamma \left( {^{\frac{{n + 1}}{2}}} \right)}}{{\Gamma \left( {^{\frac{n}{2}}} \right)}}\)

Step by step solution

01

Given information

X follows \({\chi ^2}\)a distribution with m degrees of freedom.

02

Calculate the mean 

\(\begin{align}E\left( {{X^{\frac{1}{2}}}} \right) &= \int\limits_0^\infty {{x^{^{\frac{1}{2}}}}\frac{1}{{{2^{\frac{n}{2}}}\Gamma \left( {^{\frac{n}{2}}} \right)}}} {x^{^{\frac{n}{2} - 1}}}{e^{{ - ^{\frac{x}{2}}}}}dx\\ &= \frac{1}{{{2^{\frac{n}{2}}}\Gamma \left( {^{\frac{n}{2}}} \right)}}\int\limits_0^\infty {{x^{^{\frac{{n - 1}}{2}}}}{e^{{ - ^{\frac{x}{2}}}}}dx} \\ &= \frac{1}{{{2^{\frac{n}{2}}}\Gamma \left( {^{\frac{n}{2}}} \right)}}{2^{^{\frac{{n + 1}}{2}}}}\Gamma \left( {^{\frac{{n + 1}}{2}}} \right)\\ &= \frac{{\sqrt 2 \Gamma \left( {^{\frac{{n + 1}}{2}}} \right)}}{{\Gamma \left( {^{\frac{n}{2}}} \right)}}\end{align}\)

Hence, \(E\left( {{X^{\frac{1}{2}}}} \right) = \frac{{\sqrt 2 \Gamma \left( {^{\frac{{n + 1}}{2}}} \right)}}{{\Gamma \left( {^{\frac{n}{2}}} \right)}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with unknown mean μ (−∞ < μ < ∞) and known precision \(\tau \) . Suppose also that the prior distribution of μ is the normal distribution with mean \({\mu _0}\) and precision \({\lambda _0}\) . Show that the posterior distribution of μ, given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the normal distribution with mean

\(\frac{{{\lambda _0}{\mu _0} + n\tau {{\bar x}_n}}}{{{\lambda _0} + n\tau }}\)with precision \({\lambda _0} + n\tau \)

Suppose that \({X_1},...,{X_n}\) form a random sample from the Bernoulli distribution with parameter p. Let \({\bar X_n}\) be the sample average. Use the variance stabilizing transformation found in Exercise 5 of Section 6.5 to construct an approximate coefficient γ confidence interval for p

Determine whether or not each of the five following matrices is orthogonal:

  1. \(\left( {\begin{align}{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{align}} \right)\)
  2. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{ - 1}}}&{\bf{0}}\end{align}} \right)\)
  3. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{0}}{\bf{.5}}}&{\bf{0}}\end{align}} \right)\)
  4. \(\left( {\begin{align}{}{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\end{align}} \right)\)
  5. \(\left( {\begin{align}{}{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}\end{align}} \right)\)

Question: Suppose a random variable X has the Poisson distribution with an unknown mean \({\bf{\lambda }}\) (\({\bf{\lambda }}\)>0). Find a statistic \({\bf{\delta }}\left( {\bf{X}} \right)\) that will be an unbiased estimator of \({{\bf{e}}^{\bf{\lambda }}}\).Hint: If \({\bf{E}}\left( {{\bf{\delta }}\left( {\bf{X}} \right)} \right){\bf{ = }}{{\bf{e}}^{\bf{\lambda }}}\) , then \(\sum\limits_{{\bf{x = 0}}}^\infty {\frac{{{\bf{\delta }}\left( {\bf{x}} \right){{\bf{e}}^{{\bf{ - \lambda }}}}{{\bf{\lambda }}^{\bf{x}}}}}{{{\bf{x!}}}}} = {{\bf{e}}^{\bf{\lambda }}}\)

Multiply both sides of this equation by \({{\bf{e}}^{\bf{\lambda }}}\)expanding the right side in a power series in \({\bf{\lambda }}\), and then equate the coefficients of \({{\bf{\lambda }}^{\bf{x}}}\) on both sides of the equation for x = 0, 1, 2, . . ..

Consider again the conditions of Exercise 19, and let\({{\bf{\hat \beta }}_{\bf{n}}}\)n denote the M.L.E. of β.

a. Use the delta method to determine the asymptotic distribution of\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}\).

b. Show that\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}{\bf{ = }}{{\bf{\bar X}}_{\bf{n}}}\), and use the central limit theorem to determine the asymptotic distribution of\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free