Chapter 8: Q 8E (page 472)
Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}{{\bf{X}}_{\bf{2}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the uniform distribution on the interval\(\left( {{\bf{0,1}}} \right)\), and let\({\bf{W}}\)denote the range of the sample, as defined in Example 3.9.7. Also, let\({{\bf{g}}_{\bf{n}}}\left( {\bf{x}} \right)\)denote the p.d.f of the random
variable\({\bf{2n}}\left( {{\bf{1 - W}}} \right)\), and let\({\bf{g}}\left( {\bf{x}} \right)\)denote the p.d.f of the\({\chi ^{\bf{2}}}\)distribution with four degrees of freedom. Show that
\(\mathop {{\bf{lim}}}\limits_{{\bf{n}} \to \infty } {{\bf{g}}_{\bf{n}}}\left( {\bf{x}} \right){\bf{ = g}}\left( {\bf{x}} \right)\) for\({\bf{x > 0}}\).
Short Answer
\(\mathop {\lim }\limits_{n \to \infty } {g_n}\left( x \right) = g\left( x \right)\) for \(x > 0\)