Chapter 8: Q 7E (page 505)
Show that two random variables \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)cannot have the joint normal-gamma distribution such that \({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,{\bf{,E}}\left( {\bf{\tau }} \right){\bf{ = 1}}\,\,{\bf{and}}\,\,{\bf{Var}}\left( {\bf{\tau }} \right){\bf{ = 4}}\)
Short Answer
The conditions imply that \({\alpha _0} = \frac{1}{4}\)and \(E\left( \mu \right)\) exist only for \({\alpha _0} > \frac{1}{2}\)\({\alpha _0}\,\,{\rm{and}}\,\,{\beta _0}\)