Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with mean μ and variance \({\sigma ^2}\) . Assuming that the sample size n is 16, determine the values of the following probabilities:

\(\begin{align}a.\,\,\,\,P\left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \mu } \right)}^2} \le 2{\sigma ^2}} } \right)\\b.\,\,\,\,P\left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - {{\bar X}_n}} \right)}^2} \le 2{\sigma ^2}} } \right)\end{align}\)

Short Answer

Expert verified
  1. The required probability is 0.94.
  2. The required probability is 0.91.

Step by step solution

01

Given information

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with mean μ and variance \({\sigma ^2}\).and the sample size is 16.

02

Computation of the probability

a.

\(\begin{align}\Pr \left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \mu } \right)}^2} \le 2{\sigma ^2}} } \right) &= \Pr \left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{{16}}\sum\limits_{i = 1}^{16} {{{\left( {{X_i} - \mu } \right)}^2} \le 2{\sigma ^2}} } \right)\\ &= \Pr \left( {8 \le \sum\limits_{i = 1}^{16} {\frac{{{{\left( {{X_i} - \mu } \right)}^2}}}{{{\sigma ^2}}} \le 32} } \right)\\ &= \Pr \left( {8 \le V \le 32} \right)\\ &= 0.94\end{align}\)

Where V has chi-square distribution with 16 degrees of freedom and the values are obtained from chi-square table.

Thus the required probability is .94.

03

Computation of the probability

b.

\(\begin{align}\Pr \left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - {{\bar X}_n}} \right)}^2} \le 2{\sigma ^2}} } \right) &= \Pr \left( {\frac{1}{2}{\sigma ^2} \le \frac{1}{{16}}\sum\limits_{i = 1}^{16} {{{\left( {{X_i} - {{\bar X}_{16}}} \right)}^2} \le 2{\sigma ^2}} } \right)\\ &= P\left( {8 \le \sum\limits_{i = 1}^{16} {\frac{{{{\left( {{X_i} - {{\bar X}_{16}}} \right)}^2}}}{{{\sigma ^2}}} \le 32} } \right)\\ &= P\left( {8 \le V \le 32} \right)\\ &= 0.91\end{align}\)

Where V has chi-square distribution with 16-1=15 degrees of freedom and the values are obtained from chi-square table.

Thus the required probability is 0.91.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the situation of Exercise 9, suppose that a prior distribution is used forθwith p.d.f.ξ(θ)=0.1 exp(−0.1θ)forθ >0. (This is the exponential distribution with parameter 0.1.)

  1. Prove that the posterior p.d.f. ofθgiven the data observed in Exercise 9 is

\({\bf{\xi }}\left( {{\bf{\theta }}\left| {\bf{x}} \right.} \right){\bf{ = }}\left\{ \begin{align}{l}{\bf{4}}{\bf{.122exp}}\left( {{\bf{ - 0}}{\bf{.1\theta }}} \right)\;{\bf{if}}\;{\bf{4}}{\bf{.8 < \theta < 5}}{\bf{.2}}\\{\bf{0}}\;{\bf{otherwise}}\end{align} \right.\)

  1. Calculate the posterior probability \(\left| {{\bf{\theta - }}{{{\bf{\bar X}}}_{\bf{2}}}} \right|{\bf{ < 0}}{\bf{.1}}\), which \({{\bf{\bar X}}_{\bf{2}}}\)is the observed average of the datavalues.
  2. Calculate the posterior probability thatθis in the confidence interval found in part (a) of Exercise 9.
  3. Can you explain why the answer to part (b) is so close to the answer to part (e) of Exercise 9? Hint:Compare the posterior p.d.f. in part (a) to the function in Eq. (8.5.15).

Question:Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form n Bernoulli trials for which the parameter p is unknown (0≤p≤1). Show that the expectation of every function \({\bf{\delta }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}} \right)\)is a polynomial in p whose degree does not exceed n.

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with meanμand variance\({{\bf{\sigma }}^{\bf{2}}}\), and let\({{\bf{\hat \sigma }}^{\bf{2}}}\)denote the sample variance. Determine the smallest values ofnfor which the following relations are satisfied:

  1. \({\bf{Pr}}\left( {\frac{{{{{\bf{\hat \sigma }}}^{\bf{2}}}}}{{{{\bf{\sigma }}^{\bf{2}}}}} \le {\bf{1}}{\bf{.5}}} \right) \ge {\bf{0}}{\bf{.95}}\)
  2. \({\bf{Pr}}\left( {\left| {{{{\bf{\hat \sigma }}}^{\bf{2}}}{\bf{ - }}{{\bf{\sigma }}^{\bf{2}}}} \right| \le \frac{{\bf{1}}}{{\bf{2}}}{{\bf{\sigma }}^{\bf{2}}}} \right) \ge {\bf{0}}{\bf{.8}}\)

Question: Consider the situation described in Exercise 7 of Sec. 8.5. Use a prior distribution from the normal-gamma family with values \({{\bf{\mu }}_{\bf{0}}}{\bf{ = 150,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 0}}{\bf{.5,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 4}}\)

a. Find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau = }}\frac{{\bf{1}}}{{{{\bf{\sigma }}^{\bf{2}}}}}\)

b. Find an interval (a, b) such that the posterior probability is 0.90 that a <\({\bf{\mu }}\)<b.

Suppose that\({X_1},...,{X_n}\)form a random sample from the normal distribution with unknown mean μ and unknown variance\({\sigma ^2}\). Describe a method for constructing a confidence interval for\({\sigma ^2}\)with a specified confidence coefficient\(\gamma \left( {0 < \gamma < 1} \right)\) .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free