Chapter 8: Q 6E (page 527)
Suppose that\(X\) is a random variable for which the p.d.f. or the p.f. is\(f\left( {x|\theta } \right)\) where the value of the parameter \(\theta \) is unknown but must lie in an open interval \(\Omega \). Let \({I_0}\left( \theta \right)\) denote the Fisher information in \(X\) . Suppose now that the
parameter \(\theta \) is replaced by a new parameter \(\mu \), where\(\theta = \psi \left( \mu \right)\) and\(\psi \) is a differentiable function. Let \({I_1}\left( \mu \right)\)denote the Fisher information in X when the parameter is regarded as \(\mu \). Show thatShow that\({I_1}\left( \mu \right) = {\left( {{\psi ^{'}}\left( \mu \right)} \right)^{2}}{I_0}\left( {\psi \left( \mu \right)} \right)\)
Short Answer
\({I_1}\left( \mu \right) = {\left({{\psi^{'}}\left( \mu \right)} \right)^{2}}{I_0} \left( {\psi \left( \mu \right)} \right)\)