Chapter 8: Q 6E (page 505)
Show that two random variables \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)cannot have the joint normal-gamma distribution such that
\({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,{\bf{,Var}}\left( {\bf{\mu }} \right){\bf{ = 1,E}}\left( {\bf{\tau }} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{2}}}\,\,{\bf{and}}\,\,{\bf{Var}}\left( {\bf{\tau }} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{4}}}\)
Short Answer
The conditions imply that \({\alpha _0} = 1\)and \(E\left( \mu \right)\) exist only for \({\alpha _0} > \frac{1}{2}\)