Limits for confidence coefficient \(\gamma \) in the interval \(\left( {A,B} \right)\) is given by
\(\begin{align}A &= \bar X - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }}\\B &= \bar X + {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }}\end{align}\)
Where \(\gamma \in \left( {0,1} \right)\)
For \(\gamma \)=0.95 we have
\(\begin{align}{\Phi ^{ - 1}}\left( {\frac{{1 + 0.95}}{2}} \right)\\ &= {\Phi ^{ - 1}}\left( {0.975} \right)\\ &= 1.96\end{align}\)
The length of the confidence interval is
\(\begin{align}L &= B - A\\ &= 2{\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }}\\ &= 2 \times 1.96\frac{\sigma }{{\sqrt n }}\\ &= 3.92\frac{\sigma }{{\sqrt n }}\end{align}\)
According to the question
\(\begin{align}3.92\frac{\sigma }{{\sqrt n }} < 0.01\sigma \\n > 153665\end{align}\)
Hence the minimum sample size is 153665