Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the conditions of Exercise 2, how large a random sample must be taken in order that\({\bf{P}}\left( {{\bf{|}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - \theta |}} \le {\bf{0}}{\bf{.1}}} \right) \ge {\bf{0}}{\bf{.95}}\)for every possible value ofθ?

Short Answer

Expert verified

The needed sample size is \( \ge 1537\)

Step by step solution

01

Given information

The given information is \(P\left( {|{{\bar X}_n} - \theta | \le 0.1} \right) \ge 0.95\)

02

Finding sample size

Here \({\bar X_n}\) has the normal distribution with mean \(\theta \) and variance \(4/n\) . Hence, the random variable \(Z = \left( {{{\bar X}_n} - \theta } \right)/\left( {2/\sqrt n } \right)\) will has standard normal distribution.

Therefore,

\(\begin{align}\Pr \left( {|{{\bar X}_n} - \theta | \le 0.1} \right) &= \Pr \left( {|Z| \le 0.05\sqrt n } \right)\\ &= 2\Phi \left( {0.05\sqrt n } \right) - 1\end{align}\)

Here given that,

\(\begin{align}\Pr \left( {|{{\bar X}_n} - \theta | \le 0.1} \right) \ge 0.95\\2\Phi \left( {0.05\sqrt n } \right) - 1 \ge 0.95\\\Phi \left( {0.05\sqrt n } \right) \ge 1.95/2\\0.05\sqrt n \ge {\Phi ^{ - 1}}\left( {0.975} \right)\\0.05\sqrt n \ge 1.96\,(It\,found\,from\,table\,value\,of\,\Phi )\\n \ge \frac{{{{1.96}^2}}}{{{{0.05}^2}}}\\n \ge 1536.64\end{align}\)

The required sample size is\( \ge 1537\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with meanμand variance\({{\bf{\sigma }}^{\bf{2}}}\), and let\({{\bf{\hat \sigma }}^{\bf{2}}}\)denote the sample variance. Determine the smallest values ofnfor which the following relations are satisfied:

  1. \({\bf{Pr}}\left( {\frac{{{{{\bf{\hat \sigma }}}^{\bf{2}}}}}{{{{\bf{\sigma }}^{\bf{2}}}}} \le {\bf{1}}{\bf{.5}}} \right) \ge {\bf{0}}{\bf{.95}}\)
  2. \({\bf{Pr}}\left( {\left| {{{{\bf{\hat \sigma }}}^{\bf{2}}}{\bf{ - }}{{\bf{\sigma }}^{\bf{2}}}} \right| \le \frac{{\bf{1}}}{{\bf{2}}}{{\bf{\sigma }}^{\bf{2}}}} \right) \ge {\bf{0}}{\bf{.8}}\)

Suppose that\({{\bf{X}}_{\bf{1}}},{\bf{ \ldots }},{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown meanμand known variance\({{\bf{\sigma }}^{\bf{2}}}\). Let\({\bf{\Phi }}\)stand for the c.d.f. of the standard normal distribution, and let\({{\bf{\Phi }}^{{\bf{ - 1}}}}\)be its inverse. Show that

the following interval is a coefficient\(\gamma \)confidence interval forμif\({{\bf{\bar X}}_{\bf{n}}}\)is the observed average of the data values:

\(\left( {{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}{\bf{,}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ + }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}} \right)\)

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\), and also that the joint prior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) is the normal-gamma distribution satisfying the following conditions: \({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,\,\,{\bf{,E}}\left( {\bf{\tau }} \right){\bf{ = 2,E}}\left( {{{\bf{\tau }}^{\bf{2}}}} \right){\bf{ = 5}}\,\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {\left| {\bf{\mu }} \right|{\bf{ < 1}}{\bf{.412}}} \right){\bf{ = 0}}{\bf{.5}}\)Determine the prior hyperparameters \({{\bf{\mu }}_{\bf{0}}}{\bf{,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{,}}{{\bf{\beta }}_{\bf{0}}}\)

Assume thatX1, . . . , Xnfrom a random sample from the normal distribution with meanμand variance \({\sigma ^2}\). Show that \({\hat \sigma ^2}\)has the gamma distribution with parameters \(\frac{{\left( {n - 1} \right)}}{2}\)and\(\frac{n}{{\left( {2{\sigma ^2}} \right)}}\).

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{{\bf{X}}_{\bf{n}}}\)form a random sample from a distribution for which the p.d.f. is as follows:

\({\bf{f}}\left( {{\bf{x}}\left| {\bf{\theta }} \right.} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{\theta }}{{\bf{x}}^{{\bf{\theta - 1}}}}}&{{\bf{for}}\,\,{\bf{0 < x < 1,}}}\\{\bf{0}}&{{\bf{otherwise,}}}\end{align}} \right.\)

where the value of θ is unknown (θ > 0). Determine the asymptotic distribution of the M.L.E. of θ. (Note: The M.L.E. was found in Exercise 9 of Sec. 7.5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free