Chapter 8: Q 3E (page 505)
Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with known mean μ and unknown precision \(\tau \left( {\tau > 0} \right)\). Suppose also that the prior distribution of \(\tau \) is the gamma distribution with parameters\({\alpha _0}\,\,\,{\rm{and}}\,\,\,\,{\beta _0}\left( {{\alpha _0} > 0\,\,\,{\rm{and}}\,\,\,{\beta _0} > 0} \right)\) . Show that the posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).
Short Answer
posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).