Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with known mean μ and unknown precision \(\tau \left( {\tau > 0} \right)\). Suppose also that the prior distribution of \(\tau \) is the gamma distribution with parameters\({\alpha _0}\,\,\,{\rm{and}}\,\,\,\,{\beta _0}\left( {{\alpha _0} > 0\,\,\,{\rm{and}}\,\,\,{\beta _0} > 0} \right)\) . Show that the posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).

Short Answer

Expert verified

posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \).

Step by step solution

01

Given information 

Suppose that \({X_1},...,{X_n}\) form a random sample from the normal distribution with known mean μ and unknown precision \(\tau \left( {\tau > 0} \right)\). Suppose also that the prior distribution of τ is the gamma distribution with parameters\({\alpha _0}\,\,\,{\rm{and}}\,\,\,\,{\beta _0}\left( {{\alpha _0} > 0\,\,\,{\rm{and}}\,\,\,{\beta _0} > 0} \right)\).It is required to show that the posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^{2}}} \)

02

Proof of posterior distribution of \(\tau \)  given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \) 

Precision of a Normal Distribution. The precision τ of a normal distribution is defined as the reciprocal of the variance; that is,\(\tau = \frac{1}{{{\sigma ^2}}}\)

The joint distribution pdf of i.i.d. random variables \({X_1},...,{X_n}\)from the normal distribution with mean \(\mu \) and precision \(\tau \) is given by

\(\exp \left( { - \frac{1}{2}\tau \sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} } \right), - \infty < x < \infty \)

The posterior distribution of \(\tau \) given \({X_1} = {x_1},....,{X_n} = {x_n}\) is proportional to

\(\xi \left( {\tau ;x} \right) = f\left( {x;\mu ,\tau } \right)\xi \left( \tau \right)\) It is to be noted that the prior distribution\(\xi \left( \tau \right)\) is expressed as

posterior distribution of \(\tau \) given that \({X_i} = {x_i}\) (i = 1, . . . , n) is the gamma distribution with parameters \({\alpha _0} + \frac{n}{2}\,\,\,\,{\rm{and}}\,\,\,\,\,{\beta _0} + \frac{1}{2}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \mu } \right)}^2}} \)

Hence the proof.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When the motion of a microscopic particle in a liquid or a gas is observed, it is seen that the motion is irregular because the particle frequently collides with other particles. The probability model for this motion, which is called Brownian motion,is as follows: A coordinate system is chosen in the liquid or gas. Suppose that the particle is at the origin of this coordinate system at timet=0, and let(X, Y, Z)denote the particle's coordinates at any timet >0. The random variablesX,Y, andZare i.i.d. Each has a normal distribution with mean 0 and variance\({\sigma ^2}t\). Find the probability that at timet=2, the particle will lie within a sphere whose centre is at the origin and whose radius is 4σ.

Consider the conditions of Exercise 10 again. Suppose also that it is found in a random sample of size n = 10 \(\overline {{{\bf{x}}_{\bf{n}}}} {\bf{ = 1}}\,\,{\bf{and}}\,\,{{\bf{s}}_{\bf{n}}}^{\bf{2}}{\bf{ = 8}}\) . Find the shortest possible interval so that the posterior probability \({\bf{\mu }}\) lies in the interval is 0.95.

Prove that the distribution of\({\hat \sigma _0}^2\)in Examples 8.2.1and 8.2.2 is the gamma distribution with parameters\(\frac{n}{2}\)and\(\frac{n}{{2{\sigma ^2}}}\).

Suppose thatXhas thetdistribution withmdegrees of freedom(m >2). Show that Var(X)=m/(m−2).

Hint:To evaluate\({\bf{E}}\left( {{{\bf{X}}^{\bf{2}}}} \right)\), restrict the integral to the positive half of the real line and change the variable fromxto

\({\bf{y = }}\frac{{\frac{{{{\bf{x}}^{\bf{2}}}}}{{\bf{m}}}}}{{{\bf{1 + }}\frac{{{{\bf{x}}^{\bf{2}}}}}{{\bf{m}}}}}\)

Compare the integral with the p.d.f. of a beta distribution. Alternatively, use Exercise 21 in Sec. 5.7.

Suppose that a random sampleX1, . . . , Xnis to be taken from the uniform distribution on the interval (0, θ) and thatθis unknown. How large must a random sample be taken in order\({\bf{P}}\left( {{\bf{|max}}\left\{ {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}} \right\}{\bf{ - \theta |}} \le {\bf{0}}{\bf{.10}}} \right) \ge {\bf{0}}{\bf{.95}}\) for all possibleθ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free