Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the five random variables \({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{5}}}\) are i.i.d. and that each has the standard normal distribution. Determine a constantcsuch that the random variable

\(\frac{{{\bf{c}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ + }}{{\bf{X}}_{\bf{2}}}} \right)}}{{{{\left( {{\bf{X}}_{\bf{3}}^{\bf{2}}{\bf{ + X}}_{\bf{4}}^{\bf{2}}{\bf{ + X}}_{\bf{5}}^{\bf{2}}} \right)}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}\)

will have atdistribution.

Short Answer

Expert verified

The constant is\(\sqrt {\frac{3}{2}} \)such that the given form has a tdistribution.

Step by step solution

01

Given information

There are five random variables \({X_1}, \ldots ,{X_5}\). Each independent variable is identically distributed from a standard normal distribution.

02

Determine the joint distributions

Let us consider the joint distribution of \({X_1} + {X_2}\).

So, if\({X_i} \sim N\left( {0,1} \right)\;,\;\left( {i = 1,2,3,4,5} \right)\)then,

\(\begin{align}{X_1} + {X_2} \sim N\left( {0,2} \right)\;for\;\left( {i = 1,2} \right)\\ \Rightarrow \left( {\frac{{{X_1} + {X_2}}}{{\sqrt 2 }}} \right) \sim N\left( {0,1} \right)\end{align}\)

And \(X_i^2 \sim \chi _{\left( 1 \right)}^2\)

Similarly, \(X_3^2 + X_4^2 + X_5^2 \sim \chi _{\left( 3 \right)}^2\)

03

Determine the distribution

The t-distribution is,

\(\frac{{\frac{{{X_1} + {X_2}}}{{\sqrt 2 }}}}{{\sqrt {\frac{{\left( {X_3^2 + X_4^2 + X_5^2} \right)}}{3}} }} = \sqrt {\frac{3}{2}} \left( {\frac{{\left( {{X_1} + {X_2}} \right)}}{{{{\left( {X_3^2 + X_4^2 + X_5^2} \right)}^{\frac{1}{2}}}}}} \right) \sim {t_{\left( 3 \right)}}\)

Therefore, the value of c is \(\sqrt {\frac{3}{2}} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Suppose that a random variable X has the geometric distribution with an unknown parameter p (0<p<1). Show that the only unbiased estimator of p is the estimator \({\bf{\delta }}\left( {\bf{X}} \right)\) such that \({\bf{\delta }}\left( {\bf{0}} \right){\bf{ = 1}}\) and \({\bf{\delta }}\left( {\bf{X}} \right){\bf{ = 0}}\) forX>0.

Consider again the conditions of Exercise 19, and let\({{\bf{\hat \beta }}_{\bf{n}}}\)n denote the M.L.E. of ฮฒ.

a. Use the delta method to determine the asymptotic distribution of\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}\).

b. Show that\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}{\bf{ = }}{{\bf{\bar X}}_{\bf{n}}}\), and use the central limit theorem to determine the asymptotic distribution of\(\frac{{\bf{1}}}{{{{{\bf{\hat \beta }}}_{\bf{n}}}}}\).

The study on acid concentration in cheese included a total of 30 lactic acid measurements, the 10 given in Example 8.5.4 on page 487 and the following additional 20:

1.68, 1.9, 1.06, 1.3, 1.52, 1.74, 1.16, 1.49, 1.63, 1.99, 1.15, 1.33, 1.44, 2.01, 1.31, 1.46, 1.72, 1.25, 1.08, 1.25.

a. Using the same prior as in Example 8.6.2 on page 498, compute the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) based on all 30 observations.

b. Use the posterior distribution found in Example 8.6.2 on page 498 as if it were the prior distribution before observing the 20 observations listed in this problem. Use these 20 new observations to find the posterior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)and compare the result to the answer to part (a).

We will draw a sample of size n = 11 from the normal distribution with the mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\). We will use a natural conjugate prior for the parameters \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) from the normal-gamma family with hyperparameters \({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 2,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 3}}{\bf{.5}}\,\,{\bf{and}}\,\,{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 2}}\)

The sample yields an average of \(\overline {{{\bf{x}}_{\bf{n}}}} {\bf{ = 7}}{\bf{.2}}\,\,{\bf{and}}\,\,{{\bf{s}}_{\bf{n}}}^{\bf{2}}{\bf{ = 20}}{\bf{.3}}\)

a. Find the posterior hyperparameters.

b. Find an interval that contains 95% of the posterior distribution of \({\bf{\mu }}\).

Question:Reconsider the conditions of Exercise 3. Suppose that n = 2, and we observe\({{\bf{X}}_{\bf{1}}}{\bf{ = 2}}\,\,{\bf{and}}\,\,{{\bf{X}}_{\bf{2}}}{\bf{ = - 1}}\). Compute the value of the unbiased estimator of\({\left[ {{\bf{E}}\left( {\bf{X}} \right)} \right]^{\bf{2}}}\) found in Exercise 3. Describe a flaw that you have discovered in the estimator.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free