Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown mean μand unknown variance \({{\bf{\sigma }}^{\bf{2}}}\), and let the random variableLdenote the length of the shortest confidence interval forμthat can be constructed from the observed values in the sample. Find the value of \({\bf{E}}\left( {{{\bf{L}}^{\bf{2}}}} \right)\)for the following values of the sample sizenand the confidence coefficient\(\gamma \):

\(\begin{align}{\bf{a}}{\bf{.n = 5,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{b}}{\bf{.n = 10,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{c}}{\bf{.n = 30,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{d}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.90}}\\{\bf{e}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{f}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.99}}\end{align}\)

Short Answer

Expert verified
  1. For \(n = 5\;and\;\gamma = 0.95\), \(E\left( {{L^2}} \right) = 6.16{\sigma ^2}\)
  2. For\(n = 10\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 2.04{\sigma ^2}\)
  3. For\(n = 30\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 0.55{\sigma ^2}\)
  4. For\(n = 8\;and\;\gamma = 0.90\),\(E\left( {{L^2}} \right) = 1.79{\sigma ^2}\)
  5. For\(n = 8\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 2.79{\sigma ^2}\)
  6. For \(n = 8\;and\;\gamma = 0.99\), \(E\left( {{L^2}} \right) = 6.12{\sigma ^2}\)

Step by step solution

01

Given information

\({X_1}, \cdots {X_n}\) is a random sample from a normal distribution with an unknown mean and variance. The mean and variance are denoted by \(\mu \;and\;{\sigma ^2}\) respectively. L is the length of the shortest confidence interval for \(\mu \). \(\mu \)can be constructed from the observed values in the sample.

02

determine the expectation of the shortest confidence interval

find the value of \(E\left( {{L^2}} \right)\).

As there given that the variance is unknown, there can be concluded that the length of the interval can be expressed as, \(L = 2T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{{\sigma '}}{{\sqrt n }}\)

So,\({L^2} = 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{{\sigma '}^2}}}{n}\)

Therefore, there can be clearly seen that for the value of\(E\left( {{L^2}} \right)\), simply, need to calculate\(E\left( {{{\sigma '}^2}} \right)\).

Now, it is known that,\(E\left( {\frac{{\sum\nolimits_{i = 1}^n {{{\left( {{X_i} - {{\bar X}_n}} \right)}^2}} }}{{{\sigma ^2}}}} \right) = \left( {n - 1} \right)\)

So, the value of\(E\left( {{{\sigma '}^2}} \right)\),

\(\begin{align}E\left( {{{\sigma '}^2}} \right) &= E\left( {\frac{{\sum\nolimits_{i = 1}^n {{{\left( {{X_i} - {{\bar X}_n}} \right)}^2}} }}{{\left( {n - 1} \right)}}} \right)\\ &= \frac{{{\sigma ^2}}}{{\left( {n - 1} \right)}}E\left( {\frac{{\sum\nolimits_{i = 1}^n {{{\left( {{X_i} - {{\bar X}_n}} \right)}^2}} }}{{{\sigma ^2}}}} \right)\\ &= {\sigma ^2}\end{align}\)

Therefore, the required value of\(E\left( {{L^2}} \right)\)is,

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{E\left( {{{\sigma '}^2}} \right)}}{n}\\ &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\end{align}\)

03

Calculate the expectation values for fixed confidence coefficient

In the problem the variance is unknown, so, \(E\left( {{L^2}} \right)\) will be function of \({\sigma ^2}\). There can obtained the values of T by the t- table with the corresponding degrees of freedom.

a.

For \(n = 5\;and\;\gamma = 0.95\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_4^{ - 1}\left( {0.975} \right)} \right)^2}\frac{{{\sigma ^2}}}{5}\\ &= 4 \times {\left( {2.776} \right)^2} \times \frac{{{\sigma ^2}}}{5}\\ &= 6.16{\sigma ^2}\end{align}\)

b.

For \(n = 10\;and\;\gamma = 0.95\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_9^{ - 1}\left( {0.975} \right)} \right)^2}\frac{{{\sigma ^2}}}{{10}}\\ &= 4 \times {\left( {2.262} \right)^2} \times \frac{{{\sigma ^2}}}{{10}}\\ &= 2.04{\sigma ^2}\end{align}\)

c.

For \(n = 30\;and\;\gamma = 0.95\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_{29}^{ - 1}\left( {0.975} \right)} \right)^2}\frac{{{\sigma ^2}}}{{30}}\\ &= 4 \times {\left( {2.045} \right)^2} \times \frac{{{\sigma ^2}}}{{30}}\\ &= 0.55{\sigma ^2}\end{align}\)

So, there can be noticed that for a fixed confidence coefficient \(\gamma \), if the sample size increases the confidence interval became more precise.

04

 Step 4: Calculate the expectation values for fixed sample size

d.

For \(n = 8\;and\;\gamma = 0.90\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_7^{ - 1}\left( {0.950} \right)} \right)^2}\frac{{{\sigma ^2}}}{8}\\ &= 4 \times {\left( {1.894} \right)^2} \times \frac{{{\sigma ^2}}}{8}\\ &= 1.79{\sigma ^2}\end{align}\)

e.

For \(n = 8\;and\;\gamma = 0.95\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_7^{ - 1}\left( {0.975} \right)} \right)^2}\frac{{{\sigma ^2}}}{8}\\ &= 4 \times {\left( {2.364} \right)^2} \times \frac{{{\sigma ^2}}}{8}\\ &= 2.79{\sigma ^2}\end{align}\)

f.

For \(n = 8\;and\;\gamma = 0.99\),

\(\begin{align}E\left( {{L^2}} \right) &= 4{\left( {T_{n - 1}^{ - 1}\left( {\frac{{1 + \gamma }}{2}} \right)} \right)^2}\frac{{{\sigma ^2}}}{n}\\ &= 4{\left( {T_7^{ - 1}\left( {0.995} \right)} \right)^2}\frac{{{\sigma ^2}}}{8}\\ &= 4 \times {\left( {3.499} \right)^2} \times \frac{{{\sigma ^2}}}{8}\\ &= 6.12{\sigma ^2}\end{align}\)

So, there can be noticed that for a fixed sample size n, if the confidence interval increases the confidence interval became less precise.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the situation of Example 8.5.11, suppose that we observe\({{\bf{X}}_{\bf{1}}}{\bf{ = 4}}{\bf{.7}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}{\bf{ = 5}}{\bf{.3}}\).

  1. Find the 50% confidence interval described in Example 8.5.11.
  2. Find the interval of possibleθvalues consistent with the observed data.
  3. Is the 50% confidence interval larger or smaller than the set of possibleθvalues?
  4. Calculate the value of the random variable\({\bf{Z = }}{{\bf{Y}}_{\bf{2}}}{\bf{ - }}{{\bf{Y}}_{\bf{1}}}\)as described in Example 8.5.11.
  5. Use Eq. (8.5.15) to compute the conditional probability that\(\left| {{{{\bf{\bar X}}}_{\bf{2}}}{\bf{ - \theta }}} \right|{\bf{ < 0}}{\bf{.1}}\)givenZ isequal to the value calculated in part (d).

Suppose that\({{\bf{X}}_{\bf{1}}},{\bf{ \ldots }},{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown meanμand known variance\({{\bf{\sigma }}^{\bf{2}}}\). Let\({\bf{\Phi }}\)stand for the c.d.f. of the standard normal distribution, and let\({{\bf{\Phi }}^{{\bf{ - 1}}}}\)be its inverse. Show that

the following interval is a coefficient\(\gamma \)confidence interval forμif\({{\bf{\bar X}}_{\bf{n}}}\)is the observed average of the data values:

\(\left( {{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}{\bf{,}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ + }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}} \right)\)

Question:Suppose that X has the geometric distribution with parameter p. (See Sec. 5.5.) Find the Fisher information I (p) in X.

Question:Suppose that a random variable X has the Poisson distribution with unknown mean λ (λ > 0). Show that the only unbiased estimator of\({{\bf{e}}^{{\bf{ - 2\lambda }}}}\)is the estimator δ(X) such that δ(X) = 1 if X is an even integer and δ(X) = −1 if X is an odd integer.

Continue the analysis in Example 8.6.2 on page 498. Compute an interval (a, b) such that the posterior probability is 0.9 that a <μ<b. Compare this interval with the 90% confidence interval from Example 8.5.4 on page 487.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free