Chapter 8: Q 3E (page 494)
Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown mean μand unknown variance \({{\bf{\sigma }}^{\bf{2}}}\), and let the random variableLdenote the length of the shortest confidence interval forμthat can be constructed from the observed values in the sample. Find the value of \({\bf{E}}\left( {{{\bf{L}}^{\bf{2}}}} \right)\)for the following values of the sample sizenand the confidence coefficient\(\gamma \):
\(\begin{align}{\bf{a}}{\bf{.n = 5,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{b}}{\bf{.n = 10,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{c}}{\bf{.n = 30,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{d}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.90}}\\{\bf{e}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.95}}\\{\bf{f}}{\bf{.n = 8,}}\gamma {\bf{ = 0}}{\bf{.99}}\end{align}\)
Short Answer
- For \(n = 5\;and\;\gamma = 0.95\), \(E\left( {{L^2}} \right) = 6.16{\sigma ^2}\)
- For\(n = 10\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 2.04{\sigma ^2}\)
- For\(n = 30\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 0.55{\sigma ^2}\)
- For\(n = 8\;and\;\gamma = 0.90\),\(E\left( {{L^2}} \right) = 1.79{\sigma ^2}\)
- For\(n = 8\;and\;\gamma = 0.95\),\(E\left( {{L^2}} \right) = 2.79{\sigma ^2}\)
- For \(n = 8\;and\;\gamma = 0.99\), \(E\left( {{L^2}} \right) = 6.12{\sigma ^2}\)