Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown mean μ and unknown standard deviation σ, and let\({\bf{\hat \mu }}\,\,{\bf{and}}\,\,{\bf{\hat \sigma }}\)denote the M.L.E.’s of μ and σ. For the sample size n = 17, find a value of k such that

\({\bf{Pr}}\left( {{\bf{\hat \mu > \mu + k\hat \sigma }}} \right){\bf{ = 0}}{\bf{.95}}\)

Short Answer

Expert verified

The value of k is -0.4365.

Step by step solution

01

Given information

Suppose that \({X_1},...,{X_n}\) from a random sample from the normal distribution with unknown mean is \(\mu \) and unknown standard deviation is \(\sigma \). And the sample size is\(n = 17\).

02

Finding the value of k

Since,

\(\hat \mu = {\bar X_n}\,\,and\,\,{\hat \sigma ^2} = \frac{{S_n^2}}{n}\)

It follows the t-distribution of the U has the t-distribution with n-1 degree of freedom.

It can be rewritten as,

\(U = \frac{{{n^{\frac{1}{2}}}\left( {{{\bar X}_n} - \mu } \right)}}{{{{\left( {\frac{{S_n^2}}{{n - 1}}} \right)}^{\frac{1}{2}}}}}\)

Then,

\(\begin{align}\Pr \left( {\hat \mu > \mu + k\hat \sigma } \right) &= \Pr \left( {\frac{{{{\bar X}_n} - \mu }}{{\hat \sigma }} > k} \right)\\ &= \Pr \left( {U > k{{\left( {n - 1} \right)}^{\frac{1}{2}}}} \right)\end{align}\)

Since U has the t-distribution with n-1 degrees of freedom and \(n = 17\)

Then,

\begin{align}\Pr \left[ {U > \,k{{\left( {n - 1} \right)}^{\frac{1}{2}}}} \right] = \,0.95\\\Pr \left[ {U\, > \,k{{\left( {17 - 1} \right)}^{\frac{1}{2}}}} \right] = \,0.95\\\Pr \left[ {U > k{{\left( {16} \right)}^{\frac{1}{2}}}} \right] = 0.95\\ \Pr \left[ {U > 4k} \right] = 0.95\end{align}

It is found from a table t-distribution with 16 degrees of freedom that,

\(\Pr \left( {U < 1.746} \right) = 0.95\)

Hence, by symmetry,

\(\Pr \left( {U > - 1.746} \right) = 0.95\)

So,

\(\begin{align}4k &= - 1.746\\k &= - \frac{{1.746}}{4}\\k &= - 0.4365\end{align}\)

Therefore, the value of k is -0.4365.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the situation of Example 8.5.11, suppose that we observe\({{\bf{X}}_{\bf{1}}}{\bf{ = 4}}{\bf{.7}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}{\bf{ = 5}}{\bf{.3}}\).

  1. Find the 50% confidence interval described in Example 8.5.11.
  2. Find the interval of possibleθvalues consistent with the observed data.
  3. Is the 50% confidence interval larger or smaller than the set of possibleθvalues?
  4. Calculate the value of the random variable\({\bf{Z = }}{{\bf{Y}}_{\bf{2}}}{\bf{ - }}{{\bf{Y}}_{\bf{1}}}\)as described in Example 8.5.11.
  5. Use Eq. (8.5.15) to compute the conditional probability that\(\left| {{{{\bf{\bar X}}}_{\bf{2}}}{\bf{ - \theta }}} \right|{\bf{ < 0}}{\bf{.1}}\)givenZ isequal to the value calculated in part (d).

Show that two random variables \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)cannot have the joint normal-gamma distribution such that

\({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,{\bf{,Var}}\left( {\bf{\mu }} \right){\bf{ = 1,E}}\left( {\bf{\tau }} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{2}}}\,\,{\bf{and}}\,\,{\bf{Var}}\left( {\bf{\tau }} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{4}}}\)

Question:Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form n Bernoulli trials for which the parameter p is unknown (0≤p≤1). Show that the expectation of every function \({\bf{\delta }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}} \right)\)is a polynomial in p whose degree does not exceed n.

Determine whether or not each of the five following matrices is orthogonal:

  1. \(\left( {\begin{align}{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{align}} \right)\)
  2. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{ - 1}}}&{\bf{0}}\end{align}} \right)\)
  3. \(\left( {\begin{align}{{\bf{0}}{\bf{.8}}}&{\bf{0}}&{{\bf{0}}{\bf{.6}}}\\{{\bf{ - 0}}{\bf{.6}}}&{\bf{0}}&{{\bf{0}}{\bf{.8}}}\\{\bf{0}}&{{\bf{0}}{\bf{.5}}}&{\bf{0}}\end{align}} \right)\)
  4. \(\left( {\begin{align}{}{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}&{{\bf{ - }}\frac{{\bf{1}}}{{\sqrt {\bf{3}} }}}\end{align}} \right)\)
  5. \(\left( {\begin{align}{}{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}\\{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}}\end{align}} \right)\)

Show that two random variables \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\)cannot have the joint normal-gamma distribution such that \({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,{\bf{,E}}\left( {\bf{\tau }} \right){\bf{ = 1}}\,\,{\bf{and}}\,\,{\bf{Var}}\left( {\bf{\tau }} \right){\bf{ = 4}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free