Since,
\(\hat \mu = {\bar X_n}\,\,and\,\,{\hat \sigma ^2} = \frac{{S_n^2}}{n}\)
It follows the t-distribution of the U has the t-distribution with n-1 degree of freedom.
It can be rewritten as,
\(U = \frac{{{n^{\frac{1}{2}}}\left( {{{\bar X}_n} - \mu } \right)}}{{{{\left( {\frac{{S_n^2}}{{n - 1}}} \right)}^{\frac{1}{2}}}}}\)
Then,
\(\begin{align}\Pr \left( {\hat \mu > \mu + k\hat \sigma } \right) &= \Pr \left( {\frac{{{{\bar X}_n} - \mu }}{{\hat \sigma }} > k} \right)\\ &= \Pr \left( {U > k{{\left( {n - 1} \right)}^{\frac{1}{2}}}} \right)\end{align}\)
Since U has the t-distribution with n-1 degrees of freedom and \(n = 17\)
Then,
\begin{align}\Pr \left[ {U > \,k{{\left( {n - 1} \right)}^{\frac{1}{2}}}} \right] = \,0.95\\\Pr \left[ {U\, > \,k{{\left( {17 - 1} \right)}^{\frac{1}{2}}}} \right] = \,0.95\\\Pr \left[ {U > k{{\left( {16} \right)}^{\frac{1}{2}}}} \right] = 0.95\\ \Pr \left[ {U > 4k} \right] = 0.95\end{align}
It is found from a table t-distribution with 16 degrees of freedom that,
\(\Pr \left( {U < 1.746} \right) = 0.95\)
Hence, by symmetry,
\(\Pr \left( {U > - 1.746} \right) = 0.95\)
So,
\(\begin{align}4k &= - 1.746\\k &= - \frac{{1.746}}{4}\\k &= - 0.4365\end{align}\)
Therefore, the value of k is -0.4365.