Let us consider the first matrix\(A = \left( {\begin{align}{}0&1&0\\0&0&1\\1&0&0\end{align}} \right)\)
So, the transpose of the matrix is \({A^T} = \left( {\begin{align}{}0&0&1\\1&0&0\\0&1&0\end{align}} \right)\)
Now,
\(\begin{array}{c}A{A^T} = \left[ {\begin{array}{}0&1&0\\0&0&1\\1&0&0\end{array}} \right] \times \left[ {\begin{array}{}0&0&1\\1&0&0\\0&1&0\end{array}} \right]\\ = \left[ {\begin{array}{}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\\ = I\end{array}\)
Thus, the product of the matrix and its transpose matrix is equal to identity matrix. So, it is orthogonal.
b.
Let us consider the first matrix\(B = \left( {\begin{align}{}{0.8}&0&{0.6}\\{ - 0.6}&0&{0.8}\\0&{ - 1}&0\end{align}} \right)\)
So, the transpose of the matrix is \({B^T} = \left( {\begin{align}{}{0.8}&{0.6}&0\\0&0&{ - 1}\\{0.6}&{0.8}&0\end{align}} \right)\)
Now,
\(\begin{array}{c}A{A^T} = \left[ {\begin{array}{}{0.8}&0&{0.6}\\{ - 0.6}&0&{0.8}\\0&{ - 1}&0\end{array}} \right] \times \left[ {\begin{array}{}{0.8}&{0.6}&0\\0&0&{ - 1}\\{0.6}&{0.8}&0\end{array}} \right]\\ = \left[ {\begin{array}{}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\\ = I\end{array}\)
Thus, the product of the matrix and its transpose matrix is equal to identity matrix. So, it is orthogonal.
c.
Let us consider the first matrix\(C = \left( {\begin{align}{}{0.8}&0&{0.6}\\{ - 0.6}&0&{0.8}\\0&{0.5}&0\end{align}} \right)\)
So, the transpose of the matrix is \({C^T} = \left( {\begin{align}{}{0.8}&{0.6}&0\\0&0&{0.5}\\{0.6}&{0.8}&0\end{align}} \right)\)
Now,
\(\begin{array}A{A^T} = \left[ {\begin{array}{}{0.8}&0&{0.6}\\{ - 0.6}&0&{0.8}\\0&{0.5}&0\end{array}} \right] \times \left[ {\begin{array}{}{0.8}&{0.6}&0\\0&0&{0.5}\\{0.6}&{0.8}&0\end{array}} \right]\\ = \left[ {\begin{array}{}1&0&0\\0&1&0\\0&0&{0.25}\end{array}} \right]\\ \ne I\end{array}\)
Thus, the product of the matrix and its transpose matrix is not equal to identity matrix. So, it is not orthogonal.
d).
Let us consider the first matrix\(D = \left( {\begin{align}{}{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}\end{align}} \right)\)
So, the transpose of the matrix is \({D^T} = \left( {\begin{align}{}{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}\end{align}} \right)\)
Now,
\(\begin{array}{c}A{A^T} = \left[ {\begin{array}{}{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}\end{array}} \right] \times \left[ {\begin{array}{}{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 3 }}}\end{array}} \right]\\ = \left[ {\begin{array}{}1&{ - \frac{1}{3}}&{ - \frac{1}{3}}\\{ - \frac{1}{3}}&1&{ - \frac{1}{3}}\\{ - \frac{1}{3}}&{ - \frac{1}{3}}&1\end{array}} \right]\\ \ne I\end{array}\)
Thus, the product of the matrix and its transpose matrix is not equal to identity matrix. So, it is not orthogonal.
e).
Let us consider the first matrix\(E = \left( {\begin{align}{}{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\end{align}} \right)\)
So, the transpose of the matrix is \({E^T} = \left( {\begin{align}{}{\frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\end{align}} \right)\)
Now,
\(\begin{array}{c}A{A^T} = \left[ {\begin{array}{}{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\end{array}} \right] \times \left[ {\begin{array}{}{\frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\end{array}} \right]\\ = \left[ {\begin{array}{}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}} \right]\\ = I\end{array}\)
Thus, the product of the matrix and its transpose matrix is equal to identity matrix. So, it is orthogonal.