Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose thatXhas thetdistribution withmdegrees of freedom(m >2). Show that Var(X)=m/(m−2).

Hint:To evaluate\({\bf{E}}\left( {{{\bf{X}}^{\bf{2}}}} \right)\), restrict the integral to the positive half of the real line and change the variable fromxto

\({\bf{y = }}\frac{{\frac{{{{\bf{x}}^{\bf{2}}}}}{{\bf{m}}}}}{{{\bf{1 + }}\frac{{{{\bf{x}}^{\bf{2}}}}}{{\bf{m}}}}}\)

Compare the integral with the p.d.f. of a beta distribution. Alternatively, use Exercise 21 in Sec. 5.7.

Short Answer

Expert verified

\(Var\left( X \right) = \frac{m}{{m - 2}}\) . Proved

Step by step solution

01

Given information

A random variable X has the t- distribution with m degrees of freedom and m is greater than 2. So, the probability density function is,

\(f\left( x \right) = \frac{{\Gamma \left( {\frac{{m + 1}}{2}} \right)}}{{{{\left( {m\pi } \right)}^{\frac{1}{2}}}\Gamma \left( {\frac{m}{2}} \right)}}{\left( {1 + \frac{{{x^2}}}{m}} \right)^{ - \frac{{\left( {m + 1} \right)}}{2}}}\;for\; - \infty < x < \infty \) .

02

Evaluate the expectation of the random variable

As the variable X is from t-distribution, so,\(E\left( X \right) = 0\)

Let us consider the square of the expectation of the random variable\(E\left( {{X^2}} \right)\)

So,

\(\begin{align}E\left( {{X^2}} \right) &= c\int_{ - \infty }^\infty {{x^2}{{\left( {1 + \frac{{{x^2}}}{m}} \right)}^{\frac{{ - \left( {m + 1} \right)}}{2}}}dx} \\ &= 2c\int_{ - \infty }^\infty {{x^2}{{\left( {1 + \frac{{{x^2}}}{m}} \right)}^{\frac{{ - \left( {m + 1} \right)}}{2}}}dx} \end{align}\)

Where\(c = \frac{{\Gamma \left( {\frac{{m + 1}}{2}} \right)}}{{{{\left( {m\pi } \right)}^{\frac{1}{2}}}\Gamma \left( {\frac{m}{2}} \right)}}\)

Now, there is provided that,

\(\begin{align}y &= \frac{{\frac{{{x^2}}}{m}}}{{1 + \frac{{{x^2}}}{m}}}\\x &= {\left( {\frac{{my}}{{1 - y}}} \right)^{\frac{1}{2}}}\\\frac{{dx}}{{dy}} &= \frac{{\sqrt m }}{2}{y^{ - \frac{1}{2}}}{\left( {1 - y} \right)^{ - \frac{3}{2}}}\end{align}\)

Now by substituting the value of x and dx in \(E\left( {{X^2}} \right)\), we get,

\(\begin{align}E\left( {{X^2}} \right) &= 2c\int_{ - \infty }^\infty {{x^2}{{\left( {1 + \frac{{{x^2}}}{m}} \right)}^{\frac{{ - \left( {m + 1} \right)}}{2}}}dx} \\ &= \sqrt m c\int_0^1 {\frac{{my}}{{\left( {1 - y} \right)}}{{\left( {1 + \frac{y}{{1 - y}}} \right)}^{\frac{{ - \left( {m + 1} \right)}}{2}}}{y^{ - \frac{1}{2}}}{{\left( {1 - y} \right)}^{ - \frac{3}{2}}}dy} \\ &= {m^{\frac{3}{2}}}c\frac{{\Gamma \left( {\frac{3}{2}} \right)\Gamma \left( {\frac{{\left( {m - 2} \right)}}{2}} \right)}}{{\Gamma \left( {\frac{{\left( {m + 1} \right)}}{2}} \right)}}\\ &= m{\pi ^{ - \frac{1}{2}}}\Gamma \left( {\frac{3}{2}} \right)\frac{{\Gamma \left( {\frac{{\left( {m - 2} \right)}}{2}} \right)}}{{\Gamma \left( {\frac{m}{2}} \right)}}\\ &= m{\pi ^{ - \frac{1}{2}}}\left( {\frac{1}{2}\sqrt \pi } \right)\frac{1}{{\left( {\frac{{\left( {m - 2} \right)}}{2}} \right)}}\\ &= \frac{m}{{m - 2}}\end{align}\)

03

Calculate the variance

The variance of the variable is,

\(\begin{align}Var\left( X \right) &= E\left( {{X^2}} \right) - E\left( X \right)\\ &= \frac{m}{{m - 2}} - 0\\ &= \frac{m}{{m - 2}}\end{align}\)

Therefore, \(Var\left( X \right) = \frac{m}{{m - 2}}\) . Proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that X1,……,Xn form a random sample from a normal distribution for which the mean is known and the variance is unknown. Construct an efficient estimator that is not identically equal to a constant, and determine the expectation and the variance of this estimator.

Suppose that\(X\) is a random variable for which the p.d.f. or the p.f. is\(f\left( {x|\theta } \right)\) where the value of the parameter \(\theta \) is unknown but must lie in an open interval \(\Omega \). Let \({I_0}\left( \theta \right)\) denote the Fisher information in \(X\) . Suppose now that the

parameter \(\theta \) is replaced by a new parameter \(\mu \), where\(\theta = \psi \left( \mu \right)\) and\(\psi \) is a differentiable function. Let \({I_1}\left( \mu \right)\)denote the Fisher information in X when the parameter is regarded as \(\mu \). Show thatShow that\({I_1}\left( \mu \right) = {\left( {{\psi ^{'}}\left( \mu \right)} \right)^{2}}{I_0}\left( {\psi \left( \mu \right)} \right)\)

Question:Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form n Bernoulli trials for which the parameter p is unknown (0≤p≤1). Show that the expectation of every function \({\bf{\delta }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}} \right)\)is a polynomial in p whose degree does not exceed n.

Question:Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the uniform distribution on the interval (0, θ), where the value of the parameter θ is unknown; and let\({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{,}}...{{\bf{X}}_{\bf{n}}}} \right)\). Show that\(\left( {\frac{{\left( {{\bf{n + 1}}} \right)}}{{\bf{n}}}} \right){{\bf{Y}}_{\bf{n}}}\) is an unbiased estimator of θ.

Question: Prove the limit formula Eq. (8.4.6).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free