Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that\({{\bf{X}}_{\bf{1}}},{\bf{ \ldots }},{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown meanμand known variance\({{\bf{\sigma }}^{\bf{2}}}\). Let\({\bf{\Phi }}\)stand for the c.d.f. of the standard normal distribution, and let\({{\bf{\Phi }}^{{\bf{ - 1}}}}\)be its inverse. Show that

the following interval is a coefficient\(\gamma \)confidence interval forμif\({{\bf{\bar X}}_{\bf{n}}}\)is the observed average of the data values:

\(\left( {{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}{\bf{,}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ + }}{{\bf{\Phi }}^{{\bf{ - 1}}}}\left( {\frac{{{\bf{1 + }}\gamma }}{{\bf{2}}}} \right)\frac{{\bf{\sigma }}}{{{{\bf{n}}^{\frac{{\bf{1}}}{{\bf{2}}}}}}}} \right)\)

Short Answer

Expert verified

Proved. The interval is a coefficient \(\gamma \) confidence interval for \(\mu \) if \({\bar X_n}\) is the observed average of the data values.

Step by step solution

01

Given information

There is a random sample \({X_1}, \ldots ,{X_n}\) \(normal\left( {\mu ,{\sigma ^2}} \right)\). Here \(\mu \)unknown and \({\sigma ^2}\) is known. \(\Phi \) is the cumulative distribution function of the random sample.

02

Consider the confidence interval

Consider the confidence interval,

\(\left( {{{\bar X}_n} - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }},{{\bar X}_n} + {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }}} \right)\)

Where \(\gamma \) is the coefficient for\(\mu \) , and \({\bar X_n}\) is the sample mean

03

Calculate the confidence interval

Let us consider

\(\Pr \left( {{{\bar X}_n} - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }} < \mu < {{\bar X}_n} + {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\frac{\sigma }{{\sqrt n }}} \right)\)

Now by subtracting\({\bar X_n}\)from all the sides and the divide the sides by\(\frac{\sigma }{{\sqrt n }}\), we get,

\(\Pr \left[ { - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right) < \frac{{\mu - {{\bar X}_n}}}{{{\raise0.7ex\hbox{$\sigma $} \!\mathord{\left/ {\vphantom {\sigma {\sqrt n }}}\right. \ } \!\lower0.7ex\hbox{${\sqrt n }$}}}} < {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)} \right]\)

Therefore, the probability that the variable lies between\( - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\;and\;{\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)\)is,

\(\begin{align}\Pr \left( { - {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right) < \frac{{\mu - {{\bar X}_n}}}{{{\raise0.7ex\hbox{$\sigma $} \!\mathord{\left/ {\vphantom {\sigma {\sqrt n }}}\right. \ } \!\lower0.7ex\hbox{${\sqrt n }$}}}} < {\Phi ^{ - 1}}\left( {\frac{{1 + \gamma }}{2}} \right)} \right) &= \frac{{1 + \gamma }}{2} - \left( {1 - \frac{{1 + \gamma }}{2}} \right)\\ &= \frac{{1 + \gamma }}{2} + \frac{{1 + \gamma }}{2} - 1\\ &= \frac{{2\left( {1 + \gamma } \right)}}{2} - 1\\ &= 1 + \gamma - 1\\ &= \gamma \end{align}\)

Thus, it is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the conditions of Exercise 2, how large a random sample must be taken in order that \({\bf{E}}\left( {{\bf{|}}{{{\bf{\bar X}}}_{\bf{n}}}{\bf{ - \theta |}}} \right) \le {\bf{0}}{\bf{.1}}\) for every possible value ofθ?

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the normal distribution with unknown mean μ and unknown standard deviation σ, and let\({\bf{\hat \mu }}\,\,{\bf{and}}\,\,{\bf{\hat \sigma }}\)denote the M.L.E.’s of μ and σ. For the sample size n = 17, find a value of k such that

\({\bf{Pr}}\left( {{\bf{\hat \mu > \mu + k\hat \sigma }}} \right){\bf{ = 0}}{\bf{.95}}\)

Suppose that a single observation X is taken from the normal distribution with mean 0 and unknown standard deviation σ > 0. Find an unbiased estimator, determine its variance, and show that this variance is more significant than for every value σ > 0. Note that the value of I(σ) was found in Exercise 4.

Suppose that X1,…….,Xn form a random sample from the Bernoulli distribution with unknown parameter p. Show that the variance of every unbiased estimator of (1-p)2 must be at least 4p(1-p)3/n.

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\), and also that the joint prior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) is the normal-gamma distribution satisfying the following conditions: \({\bf{E}}\left( {\bf{\mu }} \right){\bf{ = 0}}\,\,\,\,{\bf{,E}}\left( {\bf{\tau }} \right){\bf{ = 2,E}}\left( {{{\bf{\tau }}^{\bf{2}}}} \right){\bf{ = 5}}\,\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {\left| {\bf{\mu }} \right|{\bf{ < 1}}{\bf{.412}}} \right){\bf{ = 0}}{\bf{.5}}\)Determine the prior hyperparameters \({{\bf{\mu }}_{\bf{0}}}{\bf{,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{,}}{{\bf{\beta }}_{\bf{0}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free