Chapter 8: Q 1E (page 505)
Suppose that a random variableXhas the normal distributionwith meanμand precision\(\tau \). Show that the random variable\({\bf{Y = aX + b}}\;\left( {{\bf{a}} \ne {\bf{0}}} \right)\)has the normal distribution with meanaμ+band precision\(\frac{\tau }{{{{\bf{a}}^{\bf{2}}}}}\).
Short Answer
Proved. The random variable \(Y = aX + b\;\left( {a \ne 0} \right)\) has a normal distribution with mean \(a\mu + b\) and precision \(\frac{\tau }{{{a^2}}}\).