The p.d.f. of an exponential distribution is,
\(f\left( {x\left| \beta \right.} \right) = \beta \exp \left( { - \beta x} \right)\)
Then,
Taking log,
\(\begin{align}\lambda \left( {x\left| \beta \right.} \right) &= \log f\left( {x\left| \beta \right.} \right)\\ &= \log \left( \beta \right) - \beta x\end{align}\)
\(\begin{align}\lambda '\left( {x\left| \beta \right.} \right) &= \frac{1}{\beta } - x\\\lambda ''\left( {x\left| \beta \right.} \right) &= - \frac{1}{{{\beta ^2}}}\end{align}\)
The Fisher information is,
\(\begin{align}I\left( \beta \right) &= - {E_\theta }\left( { - \frac{1}{{{\beta ^2}}}} \right)\\ &= \frac{1}{{{\beta ^2}}}\end{align}\)
The distribution of the M.L.E of \(\beta \) will be approximately the normal distribution with the mean is \(\beta \) and the variance is \(\frac{1}{{{\beta ^2}}}\)
Hence, (Proved)