Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the exponential distribution with unknown parameter β. Show that if n is large, the distribution of the M.L.E. of β will be approximately a normal distribution with mean β and variance\(\frac{{{{\bf{\beta }}^{\bf{2}}}}}{{\bf{n}}}\).

Short Answer

Expert verified

Proved.

Step by step solution

01

Given information

Suppose that\({X_1},...,{X_n}\) from a random sample from the exponential distribution with an unknown parameter \(\beta \).

02

Showing part

The p.d.f. of an exponential distribution is,

\(f\left( {x\left| \beta \right.} \right) = \beta \exp \left( { - \beta x} \right)\)

Then,

Taking log,

\(\begin{align}\lambda \left( {x\left| \beta \right.} \right) &= \log f\left( {x\left| \beta \right.} \right)\\ &= \log \left( \beta \right) - \beta x\end{align}\)

\(\begin{align}\lambda '\left( {x\left| \beta \right.} \right) &= \frac{1}{\beta } - x\\\lambda ''\left( {x\left| \beta \right.} \right) &= - \frac{1}{{{\beta ^2}}}\end{align}\)

The Fisher information is,

\(\begin{align}I\left( \beta \right) &= - {E_\theta }\left( { - \frac{1}{{{\beta ^2}}}} \right)\\ &= \frac{1}{{{\beta ^2}}}\end{align}\)

The distribution of the M.L.E of \(\beta \) will be approximately the normal distribution with the mean is \(\beta \) and the variance is \(\frac{1}{{{\beta ^2}}}\)

Hence, (Proved)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free