Chapter 8: Q 15E (page 506)
We will draw a sample of size n = 11 from the normal distribution with the mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\). We will use a natural conjugate prior for the parameters \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) from the normal-gamma family with hyperparameters \({{\bf{\alpha }}_{\bf{0}}}{\bf{ = 2,}}{{\bf{\beta }}_{\bf{0}}}{\bf{ = 1,}}{{\bf{\mu }}_{\bf{0}}}{\bf{ = 3}}{\bf{.5}}\,\,{\bf{and}}\,\,{{\bf{\lambda }}_{\bf{0}}}{\bf{ = 2}}\)
The sample yields an average of \(\overline {{{\bf{x}}_{\bf{n}}}} {\bf{ = 7}}{\bf{.2}}\,\,{\bf{and}}\,\,{{\bf{s}}_{\bf{n}}}^{\bf{2}}{\bf{ = 20}}{\bf{.3}}\)
a. Find the posterior hyperparameters.
b. Find an interval that contains 95% of the posterior distribution of \({\bf{\mu }}\).
Short Answer
- \({\mu _1} = 6.631\,\,,{\lambda _1} = 13,\,\,{\alpha _1} = 7.5,\,\,{\beta _1} = 22.73\)
- (5.602,7.660).