Chapter 8: Q 14SE (page 529)
Suppose that\({{\bf{X}}_{\bf{1}}}{\bf{,}}...{\bf{,}}{{\bf{X}}_{\bf{n}}}\)form a random sample from the Poisson distribution with unknown mean θ, and let
\({\bf{Y = }}\sum\nolimits_{{\bf{i = 1}}}^{\bf{n}} {{{\bf{X}}_{\bf{i}}}} \).
a. Determine the value of a constant c such that the estimator\({{\bf{e}}^{{\bf{ - cY}}}}\)is an unbiased estimator of\({{\bf{e}}^{{\bf{ - \theta }}}}\).
b. Use the information inequality to obtain a lower bound for the variance of the unbiased estimator found in part (a).
Short Answer
- The value of constant c is \(\log \left( {\frac{n}{{n - 1}}} \right)\).
- \(Var\left( {\exp \left( { - cY} \right)} \right) \ge \frac{{\theta \exp \left( { - 2\theta } \right)}}{n}\).