Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{, }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the normal distribution with unknown mean \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\), and also that the joint prior distribution of \({\bf{\mu }}\,\,{\bf{and}}\,\,{\bf{\tau }}\) is the normal-gamma distribution satisfying the following conditions: \({\bf{E}}\left( {\bf{\tau }} \right){\bf{ = 1,Var}}\left( {\bf{\tau }} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{3}}}\,\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {{\bf{\mu > 3}}} \right){\bf{ = 0}}{\bf{.5}}\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {{\bf{\mu > 0}}{\bf{.12}}} \right){\bf{ = 0}}{\bf{.9}}\,\)
Determine the prior hyper parameters \({{\bf{\mu }}_{\bf{0}}}{\bf{,}}{{\bf{\lambda }}_{\bf{0}}}{\bf{,}}{{\bf{\alpha }}_{\bf{0}}}{\bf{,}}{{\bf{\beta }}_{\bf{0}}}\)