Chapter 8: Q 10E (page 494)
In the situation of Exercise 9, suppose that a prior distribution is used forθwith p.d.f.ξ(θ)=0.1 exp(−0.1θ)forθ >0. (This is the exponential distribution with parameter 0.1.)
- Prove that the posterior p.d.f. ofθgiven the data observed in Exercise 9 is
\({\bf{\xi }}\left( {{\bf{\theta }}\left| {\bf{x}} \right.} \right){\bf{ = }}\left\{ \begin{align}{l}{\bf{4}}{\bf{.122exp}}\left( {{\bf{ - 0}}{\bf{.1\theta }}} \right)\;{\bf{if}}\;{\bf{4}}{\bf{.8 < \theta < 5}}{\bf{.2}}\\{\bf{0}}\;{\bf{otherwise}}\end{align} \right.\)
- Calculate the posterior probability \(\left| {{\bf{\theta - }}{{{\bf{\bar X}}}_{\bf{2}}}} \right|{\bf{ < 0}}{\bf{.1}}\), which \({{\bf{\bar X}}_{\bf{2}}}\)is the observed average of the datavalues.
- Calculate the posterior probability thatθis in the confidence interval found in part (a) of Exercise 9.
- Can you explain why the answer to part (b) is so close to the answer to part (e) of Exercise 9? Hint:Compare the posterior p.d.f. in part (a) to the function in Eq. (8.5.15).
Short Answer
- Proved
- The posterior probability is 0.5
- The posterior probability is 1.
- Explained.