Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a box contains a large number of tacks and that the probability X that a particular tack will land with its point up when it is tossed varies from tack to tack in accordance with the following p.d.f.:

\(f\left( x \right) = \left\{ \begin{array}{l}2\left( {1 - x} \right)\;\;\;\;\;for\;0 < x < 1\\0\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

Suppose that a tack is selected at random from the box and that this tack is then tossed three times independently. Determine the probability that the tack will land with its point up on all three tosses.

Short Answer

Expert verified

Probability that the tack will land with its point up on all three tosses is \(\frac{1}{{10}}\)

Step by step solution

01

Given information:

X be the probability that a particular tack will land with its point up when it is tossed varies from back to back.

02

 Calculate the probability that the tack will land with its point up on all three tosses.

Let given

\(f\left( x \right) = \left\{ \begin{array}{l}2\left( {1 - x} \right)\;\;\;\;\;for\;0 < x < 1\\0\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

Let A be the event that the tack will land with its point up on all three tosses.

Then, \({\rm P}\left( {A|X = x} \right) = {x^3}\)

Hence,

\({\rm P}\left( A \right) = \int\limits_0^1 {{x^3} \times 2\left( {1 - x} \right)dx} \)

\(\begin{aligned}{}{\rm P}\left( A \right) &= 2\int\limits_0^1 {\left( {1 - x} \right){x^3}dx} \\ &= 2\int\limits_0^1 \begin{aligned}{l}\left( {{x^3} - {x^4}} \right)dx\\\end{aligned} \\ &= \frac{1}{{10}}\end{aligned}\)

Hence Probability that the tack will land with its point up on all three tosses is \(\frac{1}{{10}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A civil engineer is studying a left-turn lane that is long enough to hold seven cars. LetXbe the number of cars in the lane at the end of a randomly chosen red light. The engineer believes that the probability thatX=xis proportional to(x+1)(8โˆ’x)forx=0, . . . ,7 (the possible values ofX).

a. Find the p.f. ofX.

b. Find the probability thatXwill be at least 5.

Suppose that two balanced dice are rolled, and letXdenote the absolute value of the difference between thetwo numbers that appear. Determine and sketch the p.f.ofX.

Let the initial probability vector in Example 3.10.6 be\(v = \left( {\frac{1}{{16}},\frac{1}{4},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{1}{{16}}} \right)\)Find the probabilities of the six states after one generation.

An insurance agent sells a policy that has a \(100 deductible

and a \)5000 cap. When the policyholder files a claim, the policyholder must pay the first \(100. After the first \)100, the insurance company pays therest of the claim up to a maximum payment of $5000. Any

excess must be paid by the policyholder. Suppose that thedollar amount X of a claim has a continuous distribution

with p.d.f. \({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}\frac{{\bf{1}}}{{{{\left( {{\bf{1 + x}}} \right)}^{\bf{2}}}}}\) for x>0 and 0 otherwise.

LetY be the insurance company's amount to payon the claim.

a. Write Y as a function of X, i.e., \({\bf{Y = r}}\left( {\bf{X}} \right).\)

b. Find the c.d.f. of Y.

c. Explain why Y has neither a continuous nor a discretedistribution.

Suppose that the joint p.d.f. of two random variables X and Y is as follows:

\(f\left( {x,y} \right) = \left\{ \begin{aligned}c\sin x\;\;\;\;\;for\;0 \le x \le \frac{\pi }{2}\;\;and\;0 \le y \le 3\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;Otherwise\end{aligned} \right.\)

Determine (a) the conditional p.d.f. of Y for every given value of X, and

(b)\({\rm P}\left( {1 < y < \frac{2}{x} = 0.73} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free