Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the n variables\({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\) form a random sample from the uniform distribution on the interval [0, 1]and that the random variables \({{\bf{Y}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{Y}}_{\bf{n}}}\) are defined as in Eq. (3.9.8). Determine the value of \({\bf{Pr}}\left( {{{\bf{Y}}_{\bf{1}}} \le {\bf{0}}{\bf{.1}}\;{\bf{and}}\;{\bf{Y}}_{\bf{n}}^{} \le {\bf{0}}{\bf{.8}}} \right)\)

Short Answer

Expert verified

\[{0.8^n} - {0.7^n}\]

Step by step solution

01

Given information

Here,\({X_1} \ldots {X_n}\)is a random sample from uniform distribution\(U\left( {0,1} \right)\).

\(\begin{aligned}{Y_1} &= \min \left\{ {{X_1} \ldots {X_n}} \right\}\\{Y_n} &= \max \left\{ {{X_1} \ldots {X_n}} \right\}\end{aligned}\)

02

Obtain the PDF and CDF of X

The pdf of a uniform distribution is obtained by using the formula: \(\frac{1}{{b - a}};a \le x \le b\).

Here, \(a = 0,b = 1\).

Therefore, the PDF of X is expressed as,

\({f_x} = \left\{ \begin{array}{l}\frac{1}{{1 - 0}} = 1\;\;\;\;\;\;\;\;\;\;0 \le x \le 1\\0;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}\end{array} \right.\)

The CDF of a uniform distribution is obtained by using the formula:

\(\begin{aligned}{F_X}\left( x \right) &= P\left( {X \le x} \right)\\ &= \frac{{x - a}}{{b - a}}\\ &= \frac{{x - 0}}{{1 - 0}}\\ &= x\end{aligned}\)

03

Defining the probability

We have to find,

\(\begin{aligned}\Pr \left( {{Y_1} \le 0.1\;{\rm{and}}\;Y_n^{} \le 0.8} \right) &= P\left( {Y_n^{} \le 0.8} \right) - P\left( {{Y_1} > 0.1,Y_n^{} \le 0.8} \right)\\ &= P\left( {{X_1} \le 0.8, \ldots ,{X_n} \le 0.8} \right) - P\left( {0.1 < {X_1} \le 0.8, \ldots ,0.1 < {X_n} \le 0.8} \right)\\ &= {\left[ {P\left( {{X_1} \le 0.8} \right)} \right]^n} - {\left[ {P\left( {0.1 < {X_1} \le 0.8} \right)} \right]^n}\\ &= {\left[ {F\left( {0.8} \right)} \right]^n} - {\left[ {F\left( {0.8} \right) - F\left( {0.1} \right)} \right]^n}\\ &= {0.8^n} - {\left( {0.8 - 0.1} \right)^n}\\ &= {0.8^n} - {0.7^n}\end{aligned}\)

Hence, the answer is\({\bf{0}}{\bf{.}}{{\bf{8}}^{\bf{n}}}{\bf{ - 0}}{\bf{.}}{{\bf{7}}^{\bf{n}}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Suppose that the joint p.d.f. ofXandYis as follows:

\(f\left( {x,y} \right) = \left\{ \begin{array}{l}2x{e^{ - y}}\;for\;0 \le x \le 1\;and\;0 < y < \infty \\0\;otherwise\end{array} \right.\)

AreXandYindependent?

Suppose that the joint distribution of X and Y is uniform over the region in the\({\bf{xy}}\)plane bounded by the four lines\({\bf{x = - 1,x = 1,y = x + 1}}\)and\({\bf{y = x - 1}}\). Determine (a)\({\bf{Pr}}\left( {{\bf{XY > 0}}} \right)\)and (b) the conditional p.d.f. of Y given that\({\bf{X = x}}\).

Question:Suppose that the joint p.d.f. ofXandYis as follows:

\(\)\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{{\bf{15}}}}{{\bf{4}}}{{\bf{x}}^{\bf{2}}}\;{\bf{for}}\;{\bf{0}} \le {\bf{y}} \le {\bf{1 - }}{{\bf{x}}^{\bf{2}}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

a. Determine the marginal p.d.f.โ€™s ofXandY.

b. AreXandYindependent?

Find the unique stationary distribution for the Markov chain in Exercise 2.

Suppose that three boys A, B, and C are throwing a ball from one to another. Whenever A has the ball, he throws it to B with a probability of 0.2 and to C with a probability of 0.8. Whenever B has the ball, he throws it to A with a probability of 0.6 and to C with a probability of 0.4. Whenever C has the ball, he is equally likely to throw it to either A or B.

a. Consider this process to be a Markov chain and construct the transition matrix.

b. If each of the three boys is equally likely to have the ball at a certain time n, which boy is most likely to have the ball at time\(n + 2\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free