Chapter 3: Q8E (page 129)
Question:Suppose thatXandYare random variables such that(X, Y)must belong to the rectangle in thexy-plane containing all points(x, y)for which 0≤x≤3 and 0≤y≤4. Suppose also that the joint c.d.f. ofXandYat every point
(x,y) in this rectangle is specified as follows:
\({\bf{F}}\left( {{\bf{x,y}}} \right){\bf{ = }}\frac{{\bf{1}}}{{{\bf{156}}}}{\bf{xy}}\left( {{{\bf{x}}^{\bf{2}}}{\bf{ + y}}} \right)\)
Determine
(a) Pr(1≤X≤2 and 1≤Y≤2);
(b) Pr(2≤X≤4 and 2≤Y≤4);
(c) the c.d.f. ofY;
(d) the joint p.d.f. ofXandY;
(e) Pr(Y≤X).
Short Answer
- \(\Pr \left( {1 \le X \le 2\;and\;1 \le y \le 2} \right) = \frac{{10}}{{156}}\)
- \(\Pr \left( {2 \le X \le 4\;and\;2 \le y \le 4} \right) = \frac{{50}}{{156}}\)
- The c.d.f of Y is\({F_Y}\left( y \right) = \left\{ \begin{array}{l}0\;if\;y < 0\\\frac{1}{{52}}y\left( {9 + y} \right)\;if\;0 \le y \le 4\\0\;if\;y > 1\end{array} \right.\)
- The X and Y joint is\(f\left( {x,y} \right) = \frac{1}{{156}}\left( {3{x^2} + 2x} \right){I_{\left( {0,3} \right) \times \left( {0,4} \right)}}\left( {x,y} \right)\)
- \(\Pr \left( {Y \le X} \right) = 0.447\)