Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Suppose that the joint p.d.f. of X and Y is as follows:

\(f\left( {x,y} \right) = \left\{ \begin{array}{l}24xy for x \ge 0,y \ge 0, and x + y \le 1,\\0 otherwise\end{array} \right.\).

Are X and Y independent?

Short Answer

Expert verified

X and Y are not independent.

Step by step solution

01

Compute the marginal density of X

The marginal density of\(X,f\left( x \right)\)is

\(\begin{array}{c}X,f\left( x \right) = \int\limits_0^1 {24xydy} \\ = 12x.......(1)\end{array}\)

02

Compute the marginal density of Y

The marginal density of\(Y,f\left( y \right)\)

\(\begin{array}{c}Y,f\left( y \right) = \int\limits_0^1 {24xydx} \\ = 12y..........(2)\end{array}\)

From equations (1) and (2) we can say that

\(f\left( x \right) \times f\left( y \right) = 144xy\)

\( \ne f(x,y)\)

Hence we can conclude that X and Y are not independent

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a box contains seven red balls and three blue balls. If five balls are selected at random, without replacement, determine the p.f. of the number of red balls that will be obtained.

Suppose that a point (X, Y) is chosen at random from the disk S defined as follows:

\(S = \left\{ {\left( {x,y} \right) :{{\left( {x - 1} \right)}^2} + {{\left( {y + 2} \right)}^2} \le 9} \right\}.\) Determine (a) the conditional pdf of Y for every given value of X, and (b) \({\rm P}\left( {Y > 0|x = 2} \right)\)

Let the initial probability vector in Example 3.10.6 be\(v = \left( {\frac{1}{{16}},\frac{1}{4},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{1}{{16}}} \right)\)Find the probabilities of the six states after one generation.

Suppose that a coin is tossed repeatedly in such a way that heads and tails are equally likely to appear on any given toss and that all tosses are independent, with the following exception: Whenever either three heads or three tails have been obtained on three successive tosses, then the outcome of the next toss is always of the opposite type. At time\(n\left( {n \ge 3} \right)\)let the state of this process be specified by the outcomes on tosses\(n - 2\),\(n - 1\)and n. Show that this process is a Markov chain with stationary transition probabilities and construct the transition matrix.

Question:A certain drugstore has three public telephone booths. Fori=0, 1, 2, 3, let\({{\bf{p}}_{\bf{i}}}\)denote the probability that exactlyitelephone booths will be occupied on any Monday evening at 8:00 p.m.; and suppose that\({{\bf{p}}_{\bf{0}}}\)=0.1,\({{\bf{p}}_{\bf{1}}}\)=0.2,\({{\bf{p}}_{\bf{2}}}\)=0.4, and\({{\bf{p}}_{\bf{3}}}\)=0.3. LetXandYdenote the number of booths that will be occupied at 8:00 p.m. on two independent Monday evenings. Determine:

(a) the joint p.f. ofXandY;

(b) Pr(X=Y);

(c) Pr(X > Y ).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free