Chapter 3: Q7E (page 187)
Suppose that \({{\bf{X}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}\)are i.i.d. random variables andthat the p.d.f. of each of them is as follows:
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}\left\{ \begin{array}{l}{{\bf{e}}^{{\bf{ - x}}}}\;\;\;\;\;\;{\bf{for}}\;{\bf{x > 0}}\\{\bf{0}}\;\;\;\;\;\;\;\;{\bf{otherwise}}\end{array} \right.\)
Find the p.d.f. of \({\bf{Y = }}{{\bf{X}}_{\bf{1}}} - {{\bf{X}}_{\bf{2}}}\)
Short Answer
The p.d.f of Y is
\[\]\(g\left( y \right) = \left\{ \begin{array}{l}\frac{1}{2}{e^{ - \left| y \right|}}\;\;\;\;\;{\rm{for}}\; - \infty < y < \infty \\0\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}\end{array} \right.\)